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Algorithms	From	Scratch.	This	is	your	guide	to	learning	the	details	of	machine	learning	algorithms	by	implementing	them	from	scratch	in	Python.	You	will	discover	how	to	load	data,	evaluate	models	and	implement	a	suite	of	top	machine	learning	algorithms	using	step-by-step	tutorials	and	sample	code.	Machine	learning	algorithms	do	have	a	lot	of
math	and	theory	under	the	covers,	but	you	do	not	need	to	know	why	algorithms	work	to	be	able	to	implement	them	and	apply	them	to	achieve	real	and	valuable	results.	From	an	applied	perspective,	machine	learning	is	a	shallow	field	and	a	motivated	developer	can	quickly	pick	it	up	and	start	making	very	real	and	impactful	contributions.	This	is	my
goal	for	you	and	this	book	is	your	ticket	to	that	outcome.	Implement	Machine	Learning	Algorithms	Most	developers	that	I	know	(myself	included)	learn	best	by	implementing.	It	is	our	preferred	learning	style	and	it	is	the	reason	that	I	created	this	book.	This	section	lists	the	benefits	of	implementing	machine	learning	algorithms	from	scratch,	some
benefits	from	extending	your	own	implementations	as	well	as	some	limitations	to	this	approach	to	learning.	Implementation	Benefits	Machine	learning	is	all	about	algorithms	and	there	are	so	many	algorithms	that	it	can	feel	overwhelming.	Really,	there	are	probably	only	10	algorithms	that	if	understood	will	unlock	the	field	for	you.	An	approach	that
you	can	use	to	get	a	handle	on	machine	learning	algorithms	is	to	implement	them	from	scratch.	This	will	give	you	a	deep	understanding	of	how	the	algorithm	works	and	all	of	the	micro-decision	points	within	the	method	that	can	be	parameterized	or	modified	to	tune	it	to	a	specific	problem.	The	benefits	of	implementing	algorithms	from	scratch	are:	ˆ
Understanding:	You	will	gain	a	deep	appreciation	for	how	the	algorithm	works.	You	will	begin	to	understand	how	the	mathematical	description	of	the	method	relates	to	vectors	and	matrices	of	numbers	that	your	code	operates	on.	You	will	also	know	how	all	of	the	parameters	are	used,	their	effects	and	even	have	insights	into	how	it	could	be	further
parameterized	to	specialize	it	for	a	problem.	ˆ	Starting	Point:	Your	implementation	will	provide	the	basis	for	more	advanced	extensions	and	even	an	operational	system	that	uses	the	algorithm.	Your	deep	knowledge	of	the	algorithm	and	your	implementation	can	give	you	advantages	of	knowing	the	space	and	time	complexity	of	your	own	code	over
using	an	opaque	off-the-shelf	library.	vi	vii	ˆ	Ownership:	The	implementation	is	your	own	giving	you	confidence	with	the	method	and	ownership	over	how	it	is	realized	as	a	system.	It	is	no	longer	just	a	machine	learning	algorithm,	but	a	method	that	is	now	in	your	toolbox.	Implementation	Extensions	Once	you	have	implemented	an	algorithm	you	can
explore	making	improvements	to	the	implementation.	Some	examples	of	improvements	you	could	explore	include:	ˆ	Experimentation:	You	can	expose	many	of	the	micro-decisions	you	made	in	the	algorithms	implementation	as	parameters	and	perform	studies	on	variations	of	those	parameters.	This	can	lead	to	new	insights	and	disambiguation	of	code
that	you	can	share	and	promote.	ˆ	Optimization:	You	can	explore	opportunities	to	make	the	implementation	more	efficient	by	using	tools,	libraries,	different	languages,	different	data	structures,	patterns	and	internal	algorithms.	Knowledge	you	have	of	algorithms	and	data	structures	for	classical	computer	science	can	be	very	beneficial	in	this	type	of
work.	ˆ	Specialization:	You	may	explore	ways	of	making	the	algorithm	more	specific	to	a	problem.	This	can	be	required	when	creating	production	systems	and	is	a	valuable	skill.	Making	an	algorithm	more	problem	specific	can	also	lead	to	increases	in	efficiency	(such	as	running	time)	and	efficacy	(such	as	accuracy	or	other	performance	measures).	ˆ
Generalization:	Opportunities	can	be	created	by	making	a	specific	algorithm	more	general.	Programmers	(like	mathematicians)	are	uniquely	skilled	in	abstraction	and	you	may	be	able	to	see	how	the	algorithm	could	be	applied	to	more	general	cases	of	a	class	of	problem	or	other	problems	entirely.	Implementation	Limitations	Developers	and	engineers
often	learn	best	by	implementing,	but	implementing	machine	learning	algorithms	is	not	the	place	to	start	for	everyone.	ˆ	Slow	for	Beginners.	Often,	practitioners	will	make	more	progress	and	progress	faster	by	learning	how	to	apply	machine	learning	algorithms	to	predictive	modeling	problems.	Implementing	algorithms	is	a	second	step	for	learning
how	to	get	more	out	of	each	algorithm	by	discovering	how	they	work	and	how	the	parameters	affect	their	behavior.	ˆ	Speed	and	Correctness.	Algorithms	that	you	use	to	solve	business	problems	need	to	be	fast	and	correct.	And	this	can	be	very	hard	to	do	for	beginners.	The	implementations	developed	for	learning	purposes	are	almost	certainly	going	to
be	too	slow	or	too	fragile	for	use	in	operations	(that	includes	all	examples	in	this	book).	Use	implementations	for	learning	and	efficient	code	libraries	for	production	systems.	Book	Organization	This	book	is	divided	into	6	main	parts:	viii	1.	Introduction.	Welcomes	you	to	the	book	and	clearly	lays	out	what	to	expect	and	your	learning	outcomes	(you	are
here).	2.	Data	Preparation.	Tutorials	for	loading	and	preparing	data,	evaluating	model	predictions,	estimating	model	skill	and	developing	a	baseline	for	model	performance.	3.	Linear	Algorithms.	Tutorials	on	linear	machine	learning	algorithms	such	as	linear	regression,	multivariate	linear	regression,	logistic	regression	and	the	Perceptron	algorithm.	4.
Nonlinear	Algorithms.	Tutorials	on	nonlinear	machine	learning	algorithms	such	as	Naive	Bayes,	k-Nearest	Neighbors,	Learning	Vector	Quantization,	Backpropagation	and	Decision	Trees.	5.	Ensemble	Algorithms.	Tutorials	on	ensemble	machine	learning	algorithms	such	as	Bootstrap	Aggregation,	Random	Forest	and	Stacked	Generalization.	6.
Conclusions.	A	review	of	how	far	you	have	come	and	resources	for	getting	help	and	further	reading.	There	are	a	few	ways	you	can	read	this	book.	You	can	dip	into	the	tutorials	as	your	need	or	interests	motivate	you.	Alternatively,	you	can	work	through	the	book	end-to-end	and	take	advantage	of	how	the	tutorials	build	in	complexity	and	range.	I
recommend	the	latter	approach.	To	get	the	very	most	from	this	book,	I	recommend	taking	each	tutorial	and	building	upon	them.	Attempt	to	improve	the	results,	apply	the	method	to	a	similar	but	different	problem,	and	so	on.	I	share	a	number	of	extension	ideas	for	you	to	consider	in	each	tutorial.	Write	up	what	you	tried	or	learned	and	share	it	on	your
blog,	social	media	or	send	me	an	email	at	[email	protected]	This	book	is	what	you	make	of	it	and	by	putting	in	a	little	extra,	you	can	quickly	become	a	true	force	in	machine	learning	algorithms.	Tutorial	Structure	A	tutorial-based	approach	is	used	throughout	the	book.	It	is	conversational	rather	than	formal	and	focuses	on	the	ideas,	the	code	needed	to
implement	those	ideas,	and	the	results	to	expect.	All	tutorials	in	this	book	follow	a	carefully	designed	6-part	structure.	This	structure	can	be	summarized	as	follows:	1.	Overview	2.	Description	3.	Tutorial	4.	Case	Study	5.	Extensions	6.	Review	ix	Overview	This	is	a	short	section	that	summarizes	the	tutorial.	You	will	discover	exactly	what	you	will	know
after	completing	the	tutorial.	Description	This	section	describes	both	the	technique	and	problem	that	you	will	be	applying	it	to.	It	will	not	describe	the	theory	behind	why	the	technique	works.	Instead,	it	focuses	on	the	salient	details	regarding	how	the	technique	works.	This	includes	points	relevant	to	implementing	it	from	scratch.	Also	included	in	this
section	is	a	summary	of	the	problem	that	the	technique	will	be	evaluated	on,	if	relevant.	Not	all	tutorials	will	have	a	problem	description:	only	those	tutorials	on	a	given	machine	learning	algorithm.	Only	standard	well-known	machine	learning	problems	are	used	as	they	are	freely	accessible	and	known	best	results	are	available	for	comparison.	Tutorial
The	tutorial	is	the	steps	to	complete	to	go	from	just	an	idea	to	a	fully	working	implementation.	Each	tutorial	was	designed	with	three	principles	in	mind:	1.	Procedural:	Tutorials	are	procedural,	meaning	that	they	are	presented	as	a	recipe	of	discrete	steps	intended	to	be	completed	in	order.	2.	Standalone:	Tutorials	are	standalone,	meaning	that	all	code
needed	to	run	the	example	is	available	within	the	tutorial,	even	if	this	involves	repetition.	3.	Consistent:	Tutorials	are	consistent,	meaning	that	the	same	routines	developed	earlier	in	the	book	are	used	again	and	again	to	load	data	and	evaluate	algorithms.	A	summary	of	the	steps	in	the	tutorial	is	provided	followed	by	the	numbered	steps	of	each	part	of
the	procedure.	Code	was	designed	to	be	modular	and	broken	down	into	many	small	functions	that	can	be	understood	and	tested	as	standalone	units.	A	procedural	rather	than	object-oriented	approach	was	used	in	all	code	examples.	Clever	Python	tricks	and	advanced	use	of	lambdas	and	list	comprehensions	were	kept	to	a	minimum	in	favor	of	for-
loops.	This	was	done	intentionally	for	3	reasons:	ˆ	To	be	kind	to	Python	novices.	ˆ	To	be	understandable	as	almost	pseudocode,	a	large	benefit	of	Python.	ˆ	To	be	readily	adaptable	for	use	in	other	other	languages	and	environments.	If	you	have	advanced	Python	skills	and	you	can	see	more	efficient	ways	to	structure	the	code,	please	share	your	ideas
with	me	and	we	can	put	them	on	the	ML	Mastery	blog.	I	would	love	to	see	what	you	come	up	with.	Disclaimer:	All	the	code	in	this	book	is	for	education	and	demonstration	only.	Code	is	not	intended	for	use	in	production	systems	or	operational	environments.	x	Case	Study	Each	algorithm	tutorial	ends	with	a	complete	code	listing	of	a	fully	working	case
study	on	a	real-world	predictive	modeling	problem.	This	is	to	show	you	how	to	use	the	technique	in	practice,	often	leveraging	techniques	introduced	earlier	in	the	book	such	as	data	loading,	data	preparation	and	algorithm	evaluation.	This	is	to	ensure	that	even	if	small	copy-paste	errors	were	made	during	the	execution	of	the	tutorial	or	steps	were
skipped,	that	you	always	have	a	reference	version	of	the	tutorial	to	run	and	use	as	a	template	for	your	own	work.	A	sample	output	is	also	provided	from	executing	the	example,	again	so	that	you	have	reference	for	comparison.	Extensions	This	section	lists	ideas	to	extend	the	example	in	the	tutorial.	This	may	include	additional	implementation	concerns
to	make	the	technique	more	robust	or	generally	applicable.	It	may	also	include	usage	heuristics	for	the	technique	to	ensure	you	can	get	more	out	of	its	application	to	new	problems.	Please	try	some	of	the	extension	ideas.	Even	email	me	and	share	your	experiences;	we	can	put	them	to	the	ML	Mastery	blog.	Review	Tutorials	end	with	a	summary	of	the
principles	and	skills	that	you	learned.	This	helps	to	reinforce	and	remind	you	of	your	progress	through	the	book	and	keep	you	highly	motivated.	Requirements	For	This	Book	Python	You	do	not	need	to	be	a	Python	expert,	but	it	would	be	helpful	if	you	have	or	know	how	to	install	and	setup	a	Python	environment.	You	are	expected	to	know	some	basic
Python	syntax.	If	you	are	a	programmer	from	another	language	like	Java	or	C#,	there	is	a	Python	crash	course	in	the	appendix	to	bring	you	up	to	speed	quickly.	The	tutorials	assume	that	you	have	Python	3	(e.g.	Python	3.6)	installed	and	working.	All	examples	have	also	been	tested	with	a	Python	2.7	environment	and	almost	all	code	examples	work
directly.	You	may	have	a	Python	environment	on	your	workstation	or	laptop,	it	may	be	in	a	VM	or	a	Docker	instance	that	you	run,	or	it	may	be	a	server	instance	that	you	can	configure	in	the	cloud.	Machine	Learning	You	do	not	need	to	be	a	machine	learning	expert,	but	it	would	be	helpful	if	you	knew	how	to	navigate	a	small	machine	learning	problem.
Concepts	and	techniques	are	described	at	the	beginning	of	each	tutorial,	but	only	briefly	enough	to	give	you	context.	Additional	resources	are	listed	for	you	to	learn	more	on	each	concept	introduced.	There	are	resources	to	go	into	these	topics	in	more	detail	at	the	end	of	the	book,	but	some	knowledge	of	these	areas	might	make	things	easier	for	you.	xi
Your	Outcomes	From	Reading	This	Book	This	book	will	lead	you	from	being	a	developer	who	is	interested	in	machine	learning	algorithms	to	a	machine	learning	developer	that	knows	how	to	implement	a	suite	of	machine	learning	algorithms	and	techniques	from	scratch	in	Python.	Specifically,	you	will	know:	ˆ	How	to	load	from	CSV	files	and	prepare
data	for	modeling.	ˆ	How	to	select	algorithm	evaluation	metrics	and	resampling	techniques	for	a	test	harness.	ˆ	How	to	develop	a	baseline	expectation	of	performance	for	a	given	problem.	ˆ	How	to	implement	and	apply	a	suite	of	linear	machine	learning	algorithms.	ˆ	How	to	implement	and	apply	a	suite	of	advanced	nonlinear	machine	learning
algorithms.	ˆ	How	to	implement	and	apply	ensemble	machine	learning	algorithms	to	improve	performance.	From	this	outcome	you	will:	ˆ	Know	how	top	machine	learning	algorithms	work	internally.	ˆ	Know	how	to	better	configure	machine	learning	algorithms	in	order	to	get	the	most	out	of	them.	ˆ	Know	the	myriad	of	micro-decisions	that	a	machine
learning	library	has	hidden	from	you	in	practice.	ˆ	Know	how	you	might	begin	to	develop	your	own	custom	machine	learning	algorithm	implementations.	What	This	Book	is	Not	This	book	solves	a	specific	problem	of	getting	you,	a	developer,	up	to	speed	on	how	to	implement	top	machine	learning	algorithms	from	scratch	in	Python.	This	book	was	not
intended	to	be	everything	to	everyone	and	it	is	very	important	to	calibrate	your	expectations.	Specifically:	ˆ	This	is	not	a	machine	learning	textbook.	We	will	not	be	getting	into	the	theory	or	mathematical	description	of	machine	learning	algorithms	as	this	is	not	required	to	implement	algorithms	from	scratch.	You	are	also	expected	to	have	some
familiarity	with	machine	learning	basics,	or	be	able	to	pick	them	up	yourself.	ˆ	This	is	not	an	applications	book.	We	will	be	using	real-world	problems	as	case	studies,	but	we	will	not	linger	on	the	best	practices	for	working	through	machine	learning	problems	end-to-end.	ˆ	This	is	not	a	Python	programming	book.	We	will	not	be	spending	a	lot	of	time	on
Python	syntax	and	programming	(e.g.	basic	programming	tasks	in	Python).	You	are	expected	to	already	be	familiar	with	Python	or	a	developer	who	can	pick	up	a	new	C-like	language	relatively	quickly.	Resources	are	provided	in	the	final	chapter	if	you	are	interested	in	focusing	on	one	of	these	related	areas.	xii	Summary	It	is	a	special	time	right	now.
The	interest	and	information	available	about	applied	machine	learning	is	so	great.	The	pace	of	change	of	machine	learning	feels	like	it	has	never	been	so	fast,	spurred	by	the	amazing	results	that	the	methods	are	showing	in	such	a	broad	range	of	fields.	This	is	the	start	of	your	journey	into	expanding	your	understanding	of	machine	learning	algorithms
and	I	am	excited	for	you.	Take	your	time,	have	fun	and	I’m	so	excited	to	see	where	you	can	take	this	amazing	new	technology.	Next	In	the	next	section	you	will	start	with	your	first	tutorial	on	how	to	load	machine	learning	data.	Part	I	Data	Preparation	1	Chapter	1	Load	Data	From	CSV	You	must	know	how	to	load	data	before	you	can	use	it	to	train	a
machine	learning	model.	When	starting	out,	it	is	a	good	idea	to	stick	with	small	in-memory	datasets	using	standard	file	formats	like	comma	separated	value	(.csv).	In	this	tutorial	you	will	discover	how	to	load	your	data	in	Python	from	scratch,	including:	ˆ	How	to	load	a	CSV	file.	ˆ	How	to	convert	strings	from	a	file	to	floating	point	numbers.	ˆ	How	to
convert	class	values	from	a	file	to	integers.	Let’s	get	started.	1.1	1.1.1	Description	Comma	Separated	Values	The	standard	file	format	for	small	datasets	is	Comma	Separated	Values	or	CSV.	In	its	simplest	form,	CSV	files	are	comprised	of	rows	of	data.	Each	row	is	divided	into	columns	using	a	comma	(,).	In	this	tutorial,	we	are	going	to	practice	loading
two	different,	standard	machine	learning	datasets	in	CSV	format.	1.1.2	Pima	Indians	Diabetes	Dataset	In	this	tutorial	we	will	use	the	Pima	Indians	Diabetes	Dataset.	This	dataset	involves	the	prediction	of	the	onset	of	diabetes	within	5	years.	The	baseline	performance	on	the	problem	is	approximately	65%.	You	can	learn	more	about	it	in	Appendix	A,
Section	A.4.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	pima-indians-diabetes.csv.	1.1.3	Iris	Flower	Species	Dataset	In	this	tutorial	we	will	also	use	the	Iris	Flower	Species	Dataset.	This	dataset	involves	the	prediction	of	iris	flower	species.	The	baseline	performance	on	the	problem	is	approximately	26%.	You
can	learn	more	about	it	in	Appendix	A,	Section	A.7.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	iris.csv.	2	1.2.	Tutorial	1.2	3	Tutorial	This	tutorial	is	divided	into	3	parts:	1.	Load	a	file.	2.	Load	a	file	and	convert	Strings	to	Floats.	3.	Load	a	file	and	convert	Strings	to	Integers.	These	steps	will	provide	the
foundations	you	need	to	handle	loading	your	own	data.	1.2.1	Load	CSV	File	The	first	step	is	to	load	the	CSV	file.	We	will	use	the	csv	module	that	is	a	part	of	the	standard	library.	The	reader()	function	in	the	csv	module	takes	a	file	as	an	argument.	We	will	create	a	function	called	load	csv()	to	wrap	this	behavior	that	will	take	a	filename	and	return	our
dataset.	We	will	represent	the	loaded	dataset	as	a	list	of	lists.	The	first	list	is	a	list	of	observations	or	rows,	and	the	second	list	is	the	list	of	column	values	for	a	given	row.	Below	is	the	complete	function	for	loading	a	CSV	file.	#	Load	a	CSV	file	def	load_csv(filename):	file	=	open(filename,	"r")	lines	=	reader(file)	dataset	=	list(lines)	return	dataset
Listing	1.1:	Function	for	loading	a	CSV.	We	can	test	this	function	by	loading	the	Pima	Indians	dataset.	Taking	a	peek	at	the	first	5	rows	of	the	raw	data	file	we	can	see	the	following:	6,148,72,35,0,33.6,0.627,50,1	1,85,66,29,0,26.6,0.351,31,0	8,183,64,0,0,23.3,0.672,32,1	1,89,66,23,94,28.1,0.167,21,0	0,137,40,35,168,43.1,2.288,33,1	Listing	1.2:	Peek
at	Pima	Indians	Diabetes	dataset.	The	data	is	numeric	and	separated	by	commas	and	we	can	expect	that	the	whole	file	meets	this	expectation.	Let’s	use	the	new	function	and	load	the	dataset.	Once	loaded	we	can	report	some	simple	details	such	as	the	number	of	rows	and	columns	loaded.	Putting	all	of	this	together,	we	get	the	following:	#	Example	of
loading	Pima	Indians	CSV	dataset	from	csv	import	reader	#	Load	a	CSV	file	def	load_csv(filename):	file	=	open(filename,	"r")	lines	=	reader(file)	dataset	=	list(lines)	return	dataset	1.2.	Tutorial	4	#	Load	dataset	filename	=	'pima-indians-diabetes.csv'	dataset	=	load_csv(filename)	print('Loaded	data	file	{0}	with	{1}	rows	and	{2}
columns'.format(filename,	len(dataset),	len(dataset[0])))	Listing	1.3:	Example	of	Loading	the	Pima	Indians	Diabetes	Dataset	CSV	File.	Running	this	example	we	see:	Loaded	data	file	pima-indians-diabetes.csv	with	768	rows	and	9	columns	Listing	1.4:	Sample	output	from	loading	the	Pima	Indians	Diabetes	dataset	CSV	file.	A	limitation	of	this	function	is
that	it	will	load	empty	lines	from	data	files	and	add	them	to	our	list	of	rows.	We	can	overcome	this	by	adding	rows	of	data	one	at	a	time	to	our	dataset	and	skipping	empty	rows.	Below	is	the	updated	example	with	this	new	improved	version	of	the	load	csv()	function.	#	Example	of	loading	Pima	Indians	CSV	dataset	from	csv	import	reader	#	Load	a	CSV
file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Load	dataset	filename	=	'pima-indians-diabetes.csv'	dataset	=	load_csv(filename)	print('Loaded	data	file	{0}	with	{1}	rows	and	{2}	columns'.format(filename,
len(dataset),	len(dataset[0])))	Listing	1.5:	Improved	Example	of	Loading	the	Pima	Indians	Diabetes	Dataset	CSV	File.	Running	this	example	we	see:	Loaded	data	file	pima-indians-diabetes.csv	with	768	rows	and	9	columns	Listing	1.6:	Sample	Output	From	Loading	the	Pima	Indians	Diabetes	Dataset	CSV	File.	1.2.2	Convert	String	to	Floats	Most,	if	not
all	machine	learning	algorithms	prefer	to	work	with	numbers.	Specifically,	floating	point	numbers	are	preferred.	Our	code	for	loading	a	CSV	file	returns	a	dataset	as	a	list	of	lists,	but	each	value	is	a	string.	We	can	see	this	if	we	print	out	one	record	from	the	dataset:	print(dataset[0])	Listing	1.7:	Display	One	Record	From	a	Dataset.	1.2.	Tutorial	5	This
produces	output	like:	['6',	'148',	'72',	'35',	'0',	'33.6',	'0.627',	'50',	'1']	Listing	1.8:	Sample	Output	From	Displaying	One	Row	of	Data.	We	can	write	a	small	function	to	convert	specific	columns	of	our	loaded	dataset	to	floating	point	values.	Below	is	this	function	called	str	column	to	float().	It	will	convert	a	given	column	in	the	dataset	to	floating	point
values,	careful	to	strip	any	whitespace	from	the	value	before	making	the	conversion.	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	Listing	1.9:	Function	For	Converting	String	Data	To	Floats.	We	can	test	this	function	by	combining	it	with	our	load	CSV	function	above,	and	convert	all	of	the
numeric	data	in	the	Pima	Indians	dataset	to	floating	point	values.	The	complete	example	is	below.	#	Example	of	converting	string	variables	to	float	from	csv	import	reader	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)
return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Load	pima-indians-diabetes	dataset	filename	=	'pima-indians-diabetes.csv'	dataset	=	load_csv(filename)	print('Loaded	data	file	{0}	with	{1}	rows	and	{2}	columns'.format(filename,	len(dataset),
len(dataset[0])))	print(dataset[0])	#	convert	string	columns	to	float	for	i	in	range(len(dataset[0])):	str_column_to_float(dataset,	i)	print(dataset[0])	Listing	1.10:	Example	of	Converting	String	Values	to	Floats	in	the	Pima	Indians	Diabetes	Dataset.	Running	this	example	we	see	the	first	row	of	the	dataset	printed	both	before	and	after	the	conversion.	We
can	see	that	the	values	in	each	column	have	been	converted	from	strings	to	numbers.	1.2.	Tutorial	6	Loaded	data	file	pima-indians-diabetes.csv	with	768	rows	and	9	columns	['6',	'148',	'72',	'35',	'0',	'33.6',	'0.627',	'50',	'1']	[6.0,	148.0,	72.0,	35.0,	0.0,	33.6,	0.627,	50.0,	1.0]	Listing	1.11:	Sample	Output	From	Converting	String	Values	to	Floats.	1.2.3
Convert	String	to	Integers	The	iris	flowers	dataset	is	like	the	Pima	Indians	dataset,	in	that	the	columns	contain	numeric	data.	The	difference	is	the	final	column,	traditionally	used	to	hold	the	outcome	or	value	to	be	predicted	for	a	given	row.	The	final	column	in	the	iris	flowers	data	is	the	iris	flower	species	as	a	string.	For	example,	below	are	the	first	5
rows	of	the	raw	dataset.	5.1,3.5,1.4,0.2,Iris-setosa	4.9,3.0,1.4,0.2,Iris-setosa	4.7,3.2,1.3,0.2,Iris-setosa	4.6,3.1,1.5,0.2,Iris-setosa	5.0,3.6,1.4,0.2,Iris-setosa	Listing	1.12:	Peek	at	Iris	Flower	Species	dataset.	Some	machine	learning	algorithms	prefer	all	values	to	be	numeric,	including	the	outcome	or	predicted	value.	We	can	convert	the	class	value	in	the
iris	flowers	dataset	to	an	integer	by	creating	a	map.	1.	First,	we	locate	all	of	the	unique	class	values,	which	happen	to	be:	Iris-setosa,	Iris-versicolor	and	Iris-virginica.	2.	Next,	we	assign	an	integer	value	to	each,	such	as:	0,	1	and	2.	3.	Finally,	we	replace	all	occurrences	of	class	string	values	with	their	corresponding	integer	values.	Below	is	a	function	to
do	just	that	called	str	column	to	int().	Like	the	previously	introduced	str	column	to	float()	it	operates	on	a	single	column	in	the	dataset.	#	Convert	string	column	to	integer	def	str_column_to_int(dataset,	column):	class_values	=	[row[column]	for	row	in	dataset]	unique	=	set(class_values)	lookup	=	dict()	for	i,	value	in	enumerate(unique):	lookup[value]	=
i	for	row	in	dataset:	row[column]	=	lookup[row[column]]	return	lookup	Listing	1.13:	Function	To	Integer	Encode	String	Class	Values.	We	can	test	this	new	function	in	addition	to	the	previous	two	functions	for	loading	a	CSV	file	and	converting	columns	to	floating	point	values.	It	also	returns	the	dictionary	mapping	of	class	values	to	integer	values,	in
case	any	users	downstream	want	to	convert	predictions	back	to	string	values	again.	The	example	below	loads	the	iris	dataset	then	converts	the	first	3	columns	to	floats	and	the	final	column	to	integer	values.	1.2.	Tutorial	7	#	Example	of	integer	encoding	string	class	values	from	csv	import	reader	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=
list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Convert	string	column	to	integer	def	str_column_to_int(dataset,	column):
class_values	=	[row[column]	for	row	in	dataset]	unique	=	set(class_values)	lookup	=	dict()	for	i,	value	in	enumerate(unique):	lookup[value]	=	i	for	row	in	dataset:	row[column]	=	lookup[row[column]]	return	lookup	#	Load	iris	dataset	filename	=	'iris.csv'	dataset	=	load_csv(filename)	print('Loaded	data	file	{0}	with	{1}	rows	and	{2}
columns'.format(filename,	len(dataset),	len(dataset[0])))	print(dataset[0])	#	convert	string	columns	to	float	for	i	in	range(4):	str_column_to_float(dataset,	i)	#	convert	class	column	to	int	lookup	=	str_column_to_int(dataset,	4)	print(dataset[0])	print(lookup)	Listing	1.14:	Example	of	Integer	Encoding	Class	Values	in	the	Iris	Dataset.	Running	this	example
produces	the	output	below.	We	can	see	the	first	row	of	the	dataset	before	and	after	the	data	type	conversions.	We	can	also	see	the	dictionary	mapping	of	class	values	to	integers.	Loaded	data	file	iris.csv	with	150	rows	and	5	columns	['5.1',	'3.5',	'1.4',	'0.2',	'Iris-setosa']	[5.1,	3.5,	1.4,	0.2,	1]	{'Iris-virginica':	0,	'Iris-setosa':	1,	'Iris-versicolor':	2}	Listing
1.15:	Sample	Output	From	Integer	Encoding	Class	Values.	1.3.	Extensions	1.3	8	Extensions	You	learned	how	to	load	CSV	files	and	perform	basic	data	conversions.	Data	loading	can	be	a	difficult	task	given	the	variety	of	data	cleaning	and	conversion	that	may	be	required	from	problem	to	problem.	There	are	many	extensions	that	you	could	make	to
make	these	examples	more	robust	to	new	and	different	data	files.	Below	are	just	a	few	ideas	you	can	consider	researching	and	implementing	yourself:	ˆ	Detect	and	remove	empty	lines	at	the	top	or	bottom	of	the	file.	ˆ	Detect	and	handle	missing	values	in	a	column.	ˆ	Detect	and	handle	rows	that	do	not	match	expectations	for	the	rest	of	the	file.	ˆ
Support	for	other	delimiters	such	as	pipe	(|)	or	white	space.	ˆ	Support	more	efficient	data	structures	such	as	arrays.	Two	libraries	you	may	wish	to	use	in	practice	for	loading	CSV	data	are	NumPy	and	Pandas.	NumPy	offers	the	loadtxt()1	function	for	loading	data	files	as	NumPy	arrays.	Pandas	offers	the	read	csv()2	function	that	offers	a	lot	of	flexibility
regarding	data	types,	file	headers	and	more.	1.4	Review	In	this	tutorial,	you	discovered	how	you	can	load	your	machine	learning	data	from	scratch	in	Python.	Specifically,	you	learned:	ˆ	How	to	load	a	CSV	file	into	memory.	ˆ	How	to	convert	string	values	to	floating	point	values.	ˆ	How	to	convert	a	string	class	value	into	an	integer	encoding.	1.4.1
Further	Reading	ˆ	Section	13.1,	CSV	File	Reading	and	Writing,	The	Python	Standard	Library	ˆ	CSV	file	format	in	RFC	4180:	Common	Format	and	MIME	Type	for	Comma-Separated	Values	(CSV)	1.4.2	Next	In	the	next	tutorial,	you	will	discover	how	to	rescale	your	machine	learning	data	for	algorithms	that	weight	input	values.	1	2	Chapter	2	Scale
Machine	Learning	Data	Many	machine	learning	algorithms	expect	data	to	be	scaled	consistently.	There	are	two	popular	methods	that	you	should	consider	when	scaling	your	data	for	machine	learning.	In	this	tutorial,	you	will	discover	how	you	can	rescale	your	data	for	machine	learning.	After	reading	this	tutorial	you	will	know:	ˆ	How	to	normalize	your
data	from	scratch.	ˆ	How	to	standardize	your	data	from	scratch.	ˆ	When	to	normalize	as	opposed	to	standardize	data.	Let’s	get	started.	2.1	Description	Many	machine	learning	algorithms	expect	the	scale	of	the	input	and	even	the	output	data	to	be	equivalent.	It	can	help	in	methods	that	weight	inputs	in	order	to	make	a	prediction,	such	as	in	linear
regression	and	logistic	regression.	It	is	practically	required	in	methods	that	combine	weighted	inputs	in	complex	ways	such	as	in	artificial	neural	networks	and	deep	learning.	2.1.1	Pima	Indians	Diabetes	Dataset	In	this	tutorial	we	will	use	the	Pima	Indians	Diabetes	Dataset.	This	dataset	involves	the	prediction	of	the	onset	of	diabetes	within	5	years.
The	baseline	performance	on	the	problem	is	approximately	65%.	You	can	learn	more	about	it	in	Appendix	A,	Section	A.4.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	pima-indians-diabetes.csv.	2.2	Tutorial	This	tutorial	is	divided	into	3	parts:	1.	Normalize	Data.	2.	Standardize	Data.	9	2.2.	Tutorial	10	3.	When
to	Normalize	and	Standardize.	These	steps	will	provide	the	foundations	you	need	to	handle	scaling	your	own	data.	2.2.1	Normalize	Data	Normalization	can	refer	to	different	techniques	depending	on	context.	Here,	we	use	normalization	to	refer	to	rescaling	an	input	variable	to	the	range	between	0	and	1.	Normalization	requires	that	you	know	the
minimum	and	maximum	values	for	each	attribute.	This	can	be	estimated	from	training	data	or	specified	directly	if	you	have	deep	knowledge	of	the	problem	domain.	You	can	easily	estimate	the	minimum	and	maximum	values	for	each	attribute	in	a	dataset	by	enumerating	through	the	values.	The	snippet	of	code	below	defines	the	dataset	minmax()
function	that	calculates	the	min	and	max	value	for	each	attribute	in	a	dataset,	then	returns	an	array	of	these	minimum	and	maximum	values.	#	Find	the	min	and	max	values	for	each	column	def	dataset_minmax(dataset):	minmax	=	list()	for	i	in	range(len(dataset[0])):	col_values	=	[row[i]	for	row	in	dataset]	value_min	=	min(col_values)	value_max	=
max(col_values)	minmax.append([value_min,	value_max])	return	minmax	Listing	2.1:	Function	To	Calculate	the	Min	and	Max	Values	For	a	Dataset.	We	can	contrive	a	small	dataset	for	testing	as	follows:	x1	x2	50	30	20	90	Listing	2.2:	Small	Contrived	Dataset.	With	this	contrived	dataset,	we	can	test	our	function	for	calculating	the	min	and	max	for	each
column.	#	Find	the	min	and	max	values	for	each	column	def	dataset_minmax(dataset):	minmax	=	list()	for	i	in	range(len(dataset[0])):	col_values	=	[row[i]	for	row	in	dataset]	value_min	=	min(col_values)	value_max	=	max(col_values)	minmax.append([value_min,	value_max])	return	minmax	#	Contrive	small	dataset	dataset	=	[[50,	30],	[20,	90]]
print(dataset)	#	Calculate	min	and	max	for	each	column	minmax	=	dataset_minmax(dataset)	print(minmax)	Listing	2.3:	Example	Calculating	the	Min	and	Max	Values	of	a	Contrived	Dataset.	2.2.	Tutorial	11	Running	the	example	produces	the	following	output.	First,	the	dataset	is	printed	in	a	list-of-lists	format,	then	the	min	and	max	for	each	column	is
printed	in	the	format	column1:	min,max	and	column2:	min,max.	For	example:	[[50,	30],	[20,	90]]	[[20,	50],	[30,	90]]	Listing	2.4:	Output	of	Example	Calculating	the	Min	and	Max	Values.	Once	we	have	estimates	of	the	maximum	and	minimum	allowed	values	for	each	column,	we	can	now	normalize	the	raw	data	to	the	range	0	and	1.	The	calculation	to
normalize	a	single	value	for	a	column	is:	value	−	min	(2.1)	max	−	min	Below	is	an	implementation	of	this	in	a	function	called	normalize	dataset()	that	normalizes	values	in	each	column	of	a	provided	dataset.	scaled	value	=	#	Rescale	dataset	columns	to	the	range	0-1	def	normalize_dataset(dataset,	minmax):	for	row	in	dataset:	for	i	in	range(len(row)):
row[i]	=	(row[i]	-	minmax[i][0])	/	(minmax[i][1]	-	minmax[i][0])	Listing	2.5:	Function	To	Normalize	a	Dataset.	We	can	tie	this	function	together	with	the	dataset	minmax()	function	and	normalize	the	contrived	dataset.	#	Find	the	min	and	max	values	for	each	column	def	dataset_minmax(dataset):	minmax	=	list()	for	i	in	range(len(dataset[0])):	col_values
=	[row[i]	for	row	in	dataset]	value_min	=	min(col_values)	value_max	=	max(col_values)	minmax.append([value_min,	value_max])	return	minmax	#	Rescale	dataset	columns	to	the	range	0-1	def	normalize_dataset(dataset,	minmax):	for	row	in	dataset:	for	i	in	range(len(row)):	row[i]	=	(row[i]	-	minmax[i][0])	/	(minmax[i][1]	-	minmax[i][0])	#	Contrive
small	dataset	dataset	=	[[50,	30],	[20,	90]]	print(dataset)	#	Calculate	min	and	max	for	each	column	minmax	=	dataset_minmax(dataset)	print(minmax)	#	Normalize	columns	normalize_dataset(dataset,	minmax)	print(dataset)	Listing	2.6:	Example	of	Normalize	the	Contrived	Dataset.	2.2.	Tutorial	12	Running	this	example	prints	the	output	below,
including	the	normalized	dataset.	[[50,	30],	[20,	90]]	[[20,	50],	[30,	90]]	[[1,	0],	[0,	1]]	Listing	2.7:	Example	Output	of	Normalizing	the	Contrived	Dataset.	We	can	combine	this	code	with	code	for	loading	a	CSV	dataset	and	load	and	normalize	the	Pima	Indians	Diabetes	dataset.	The	example	first	loads	the	dataset	and	converts	the	values	for	each	column
from	string	to	floating	point	values.	The	minimum	and	maximum	values	for	each	column	are	estimated	from	the	dataset,	and	finally,	the	values	in	the	dataset	are	normalized.	#	Example	of	normalizing	the	diabetes	dataset	from	csv	import	reader	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=
reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Find	the	min	and	max	values	for	each	column	def	dataset_minmax(dataset):	minmax	=	list()	for	i	in	range(len(dataset[0])):
col_values	=	[row[i]	for	row	in	dataset]	value_min	=	min(col_values)	value_max	=	max(col_values)	minmax.append([value_min,	value_max])	return	minmax	#	Rescale	dataset	columns	to	the	range	0-1	def	normalize_dataset(dataset,	minmax):	for	row	in	dataset:	for	i	in	range(len(row)):	row[i]	=	(row[i]	-	minmax[i][0])	/	(minmax[i][1]	-	minmax[i][0])	#
Load	pima-indians-diabetes	dataset	filename	=	'pima-indians-diabetes.csv'	dataset	=	load_csv(filename)	print('Loaded	data	file	{0}	with	{1}	rows	and	{2}	columns'.format(filename,	len(dataset),	len(dataset[0])))	#	convert	string	columns	to	float	for	i	in	range(len(dataset[0])):	str_column_to_float(dataset,	i)	print(dataset[0])	2.2.	Tutorial	13	#	Calculate
min	and	max	for	each	column	minmax	=	dataset_minmax(dataset)	#	Normalize	columns	normalize_dataset(dataset,	minmax)	print(dataset[0])	Listing	2.8:	Example	of	Normalize	the	Diabetes	Dataset.	Running	the	example	produces	the	output	below.	The	first	record	from	the	dataset	is	printed	before	and	after	normalization,	showing	the	effect	of	the
scaling.	Loaded	data	file	pima-indians-diabetes.csv	with	768	rows	and	9	columns	[6.0,	148.0,	72.0,	35.0,	0.0,	33.6,	0.627,	50.0,	1.0]	[0.35294117647058826,	0.7437185929648241,	0.5901639344262295,	0.35353535353535354,	0.0,	0.5007451564828614,	0.23441502988898377,	0.48333333333333334,	1.0]	Listing	2.9:	Example	Output	of	Normalizing
the	Diabetes	Dataset.	2.2.2	Standardize	Data	Standardization	is	a	rescaling	technique	that	refers	to	centering	the	distribution	of	the	data	on	the	value	0	and	the	standard	deviation	to	the	value	1.	Together,	the	mean	and	the	standard	deviation	can	be	used	to	summarize	a	normal	distribution,	also	called	the	Gaussian	distribution	or	bell	curve.	It
requires	that	the	mean	and	standard	deviation	of	the	values	for	each	column	be	known	prior	to	scaling.	As	with	normalizing	above,	we	can	estimate	these	values	from	training	data,	or	use	domain	knowledge	to	specify	their	values.	Let’s	start	with	creating	functions	to	estimate	the	mean	and	standard	deviation	statistics	for	each	column	from	a	dataset.
The	mean	describes	the	middle	or	central	tendency	for	a	collection	of	numbers.	The	mean	for	a	column	is	calculated	as	the	sum	of	all	values	for	a	column	divided	by	the	total	number	of	values.	Pn	i=1	valuesi	mean	=	(2.2)	count(values)	The	function	below	named	column	means()	calculates	the	mean	values	for	each	column	in	the	dataset.	#	calculate
column	means	def	column_means(dataset):	means	=	[0	for	i	in	range(len(dataset[0]))]	for	i	in	range(len(dataset[0])):	col_values	=	[row[i]	for	row	in	dataset]	means[i]	=	sum(col_values)	/	float(len(dataset))	return	means	Listing	2.10:	Function	To	Calculate	Means	For	Each	Column	in	a	Dataset.	The	standard	deviation	describes	the	average	spread	of
values	from	the	mean.	It	can	be	calculated	as	the	square	root	of	the	sum	of	the	squared	difference	between	each	value	and	the	mean	and	dividing	by	the	number	of	values	minus	1.	sP	n	2	i=1	(valuei	−	mean)	standard	deviation	=	(2.3)	count(values)	−	1	2.2.	Tutorial	14	The	function	below	named	column	stdevs()	calculates	the	standard	deviation	of
values	for	each	column	in	the	dataset	and	assumes	the	means	have	already	been	calculated.	#	calculate	column	standard	deviations	def	column_stdevs(dataset,	means):	stdevs	=	[0	for	i	in	range(len(dataset[0]))]	for	i	in	range(len(dataset[0])):	variance	=	[pow(row[i]-means[i],	2)	for	row	in	dataset]	stdevs[i]	=	sum(variance)	stdevs	=
[sqrt(x/(float(len(dataset)-1)))	for	x	in	stdevs]	return	stdevs	Listing	2.11:	Function	To	Calculate	Standard	Deviations	For	Each	Column	in	a	Dataset.	Again,	we	can	contrive	a	small	dataset	to	demonstrate	the	estimate	of	the	mean	and	standard	deviation	from	a	dataset.	x1	50	20	30	x2	30	90	50	Listing	2.12:	Small	Contrived	Dataset	To	Test
Standardization.	Using	an	excel	spreadsheet,	we	can	estimate	the	mean	and	standard	deviation	for	each	column	as	follows:	mean	stdev	x1	33.3	15.27	x2	56.6	30.55	Listing	2.13:	Expected	Descriptive	Statistics	For	Contrived	Dataset.	Using	the	contrived	dataset,	we	can	estimate	the	summary	statistics.	#	Example	of	calculating	stats	on	a	contrived
dataset	from	math	import	sqrt	#	calculate	column	means	def	column_means(dataset):	means	=	[0	for	i	in	range(len(dataset[0]))]	for	i	in	range(len(dataset[0])):	col_values	=	[row[i]	for	row	in	dataset]	means[i]	=	sum(col_values)	/	float(len(dataset))	return	means	#	calculate	column	standard	deviations	def	column_stdevs(dataset,	means):	stdevs	=	[0	for
i	in	range(len(dataset[0]))]	for	i	in	range(len(dataset[0])):	variance	=	[pow(row[i]-means[i],	2)	for	row	in	dataset]	stdevs[i]	=	sum(variance)	stdevs	=	[sqrt(x/(float(len(dataset)-1)))	for	x	in	stdevs]	return	stdevs	#	Standardize	dataset	dataset	=	[[50,	30],	[20,	90],	[30,	50]]	print(dataset)	2.2.	Tutorial	15	#	Estimate	mean	and	standard	deviation	means	=
column_means(dataset)	stdevs	=	column_stdevs(dataset,	means)	print(means)	print(stdevs)	Listing	2.14:	Example	of	Calculating	Statistics	from	the	Contrived	Dataset.	Executing	the	example	provides	the	following	output,	matching	the	numbers	calculated	in	the	spreadsheet.	[[50,	30],	[20,	90],	[30,	50]]	[33.333333333333336,	56.666666666666664]
[15.275252316519467,	30.550504633038933]	Listing	2.15:	Example	Output	From	Calculating	Statistics	from	the	Contrived	Dataset.	Once	the	summary	statistics	are	calculated,	we	can	easily	standardize	the	values	in	each	column.	The	calculation	to	standardize	a	given	value	is	as	follows:	valuei	−	mean	stdev	Below	is	a	function	named	standardize
dataset()	that	implements	this	equation	standardized	valuei	=	(2.4)	#	standardize	dataset	def	standardize_dataset(dataset,	means,	stdevs):	for	row	in	dataset:	for	i	in	range(len(row)):	row[i]	=	(row[i]	-	means[i])	/	stdevs[i]	Listing	2.16:	Function	To	Standardize	a	Dataset.	Combining	this	with	the	functions	to	estimate	the	mean	and	standard	deviation
summary	statistics,	we	can	standardize	our	contrived	dataset.	#	Example	of	standardizing	a	contrived	dataset	from	math	import	sqrt	#	calculate	column	means	def	column_means(dataset):	means	=	[0	for	i	in	range(len(dataset[0]))]	for	i	in	range(len(dataset[0])):	col_values	=	[row[i]	for	row	in	dataset]	means[i]	=	sum(col_values)	/	float(len(dataset))
return	means	#	calculate	column	standard	deviations	def	column_stdevs(dataset,	means):	stdevs	=	[0	for	i	in	range(len(dataset[0]))]	for	i	in	range(len(dataset[0])):	variance	=	[pow(row[i]-means[i],	2)	for	row	in	dataset]	stdevs[i]	=	sum(variance)	stdevs	=	[sqrt(x/(float(len(dataset)-1)))	for	x	in	stdevs]	return	stdevs	#	standardize	dataset	def
standardize_dataset(dataset,	means,	stdevs):	2.2.	Tutorial	16	for	row	in	dataset:	for	i	in	range(len(row)):	row[i]	=	(row[i]	-	means[i])	/	stdevs[i]	#	Standardize	dataset	dataset	=	[[50,	30],	[20,	90],	[30,	50]]	print(dataset)	#	Estimate	mean	and	standard	deviation	means	=	column_means(dataset)	stdevs	=	column_stdevs(dataset,	means)	print(means)
print(stdevs)	#	standardize	dataset	standardize_dataset(dataset,	means,	stdevs)	print(dataset)	Listing	2.17:	Example	of	Standardizing	the	Contrived	Dataset.	Executing	this	example	produces	the	following	output,	showing	standardized	values	for	the	contrived	dataset.	[[50,	30],	[20,	90],	[30,	50]]	[33.333333333333336,	56.666666666666664]
[15.275252316519467,	30.550504633038933]	[[1.0910894511799618,	-0.8728715609439694],	[-0.8728715609439697,	1.091089451179962],	[-0.21821789023599253,	-0.2182178902359923]]	Listing	2.18:	Example	Output	From	Standardizing	the	Contrived	Dataset.	Again,	we	can	demonstrate	the	standardization	of	a	machine	learning	dataset.	The
example	below	demonstrates	how	to	load	and	standardize	the	Pima	Indians	diabetes	dataset,	assumed	to	be	in	the	current	working	directory	as	in	the	previous	normalization	example.	#	Standardize	the	Diabetes	Dataset	from	csv	import	reader	from	math	import	sqrt	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as
file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	calculate	column	means	def	column_means(dataset):	means	=	[0	for	i	in	range(len(dataset[0]))]	for	i	in
range(len(dataset[0])):	2.2.	Tutorial	17	col_values	=	[row[i]	for	row	in	dataset]	means[i]	=	sum(col_values)	/	float(len(dataset))	return	means	#	calculate	column	standard	deviations	def	column_stdevs(dataset,	means):	stdevs	=	[0	for	i	in	range(len(dataset[0]))]	for	i	in	range(len(dataset[0])):	variance	=	[pow(row[i]-means[i],	2)	for	row	in	dataset]
stdevs[i]	=	sum(variance)	stdevs	=	[sqrt(x/(float(len(dataset)-1)))	for	x	in	stdevs]	return	stdevs	#	standardize	dataset	def	standardize_dataset(dataset,	means,	stdevs):	for	row	in	dataset:	for	i	in	range(len(row)):	row[i]	=	(row[i]	-	means[i])	/	stdevs[i]	#	Load	pima-indians-diabetes	dataset	filename	=	'pima-indians-diabetes.csv'	dataset	=
load_csv(filename)	print('Loaded	data	file	{0}	with	{1}	rows	and	{2}	columns'.format(filename,	len(dataset),	len(dataset[0])))	#	convert	string	columns	to	float	for	i	in	range(len(dataset[0])):	str_column_to_float(dataset,	i)	print(dataset[0])	#	Estimate	mean	and	standard	deviation	means	=	column_means(dataset)	stdevs	=	column_stdevs(dataset,
means)	#	standardize	dataset	standardize_dataset(dataset,	means,	stdevs)	print(dataset[0])	Listing	2.19:	Standardize	the	Diabetes	Dataset.	Running	the	example	prints	the	first	row	of	the	dataset,	first	in	a	raw	format	as	loaded,	and	then	standardized	which	allows	us	to	see	the	difference	for	comparison.	Loaded	data	file	pima-indians-diabetes.csv	with
768	rows	and	9	columns	[6.0,	148.0,	72.0,	35.0,	0.0,	33.6,	0.627,	50.0,	1.0]	[0.6395304921176576,	0.8477713205896718,	0.14954329852954296,	0.9066790623472505,	-0.692439324724129,	0.2038799072674717,	0.468186870229798,	1.4250667195933604,	1.3650063669598067]	Listing	2.20:	Example	Output	From	Standardizing	the	Diabetes
Dataset.	2.2.3	When	to	Normalize	and	Standardize	Standardization	is	a	scaling	technique	that	assumes	your	data	conforms	to	a	normal	distribution.	If	a	given	data	attribute	is	normal	or	close	to	normal,	this	is	probably	the	scaling	method	to	use.	It	is	good	practice	to	record	the	summary	statistics	used	in	the	standardization	process	so	that	you	can
apply	them	when	standardizing	data	in	the	future	that	you	may	want	to	use	with	your	model.	Normalization	is	a	scaling	technique	that	does	not	assume	any	specific	distribution.	2.3.	Extensions	18	If	your	data	is	not	normally	distributed,	consider	normalizing	it	prior	to	applying	your	machine	learning	algorithm.	It	is	good	practice	to	record	the
minimum	and	maximum	values	for	each	column	used	in	the	normalization	process,	again,	in	case	you	need	to	normalize	new	data	in	the	future	to	be	used	with	your	model.	2.3	Extensions	There	are	many	other	data	transforms	you	could	apply.	The	idea	of	data	transforms	is	to	best	expose	the	structure	of	your	problem	in	your	data	to	the	learning
algorithm.	It	may	not	be	clear	what	transforms	are	required	upfront.	A	combination	of	trial	and	error	and	exploratory	data	analysis	(plots	and	stats)	can	help	tease	out	what	may	work.	Below	are	some	additional	transforms	you	may	want	to	consider	researching	and	implementing:	ˆ	Normalization	that	permits	a	configurable	range,	such	as	-1	to	1	and
more.	ˆ	Standardization	that	permits	a	configurable	spread,	such	as	1,	2	or	more	standard	deviations	from	the	mean.	ˆ	Exponential	transforms	such	as	logarithm,	square	root	and	exponents.	ˆ	Power	transforms	such	as	Box-Cox	for	fixing	the	skew	in	normally	distributed	data.	2.4	Review	In	this	tutorial,	you	discovered	how	to	rescale	your	data	for
machine	learning	from	scratch.	Specifically,	you	learned:	ˆ	How	to	normalize	data	from	scratch.	ˆ	How	to	standardize	data	from	scratch.	ˆ	When	to	use	normalization	or	standardization	on	your	data.	2.4.1	Further	Reading	ˆ	Chapter	3	Data	Pre-processing,	page	27,	Applied	Predictive	Modeling,	2013	2.4.2	Next	In	the	next	tutorial,	you	will	discover	how
to	estimate	the	skill	of	a	predictive	modeling	algorithm	on	unseen	data.	Chapter	3	Algorithm	Evaluation	Methods	The	goal	of	predictive	modeling	is	to	create	models	that	make	good	predictions	on	new	data.	We	don’t	have	access	to	this	new	data	at	the	time	of	training,	so	we	must	use	statistical	methods	to	estimate	the	performance	of	a	model	on	new
data.	This	class	of	methods	is	called	resampling	methods,	as	they	are	resampling	your	available	training	data.	In	this	tutorial,	you	will	discover	how	to	implement	resampling	methods	from	scratch	in	Python.	After	completing	this	tutorial,	you	will	know:	ˆ	How	to	implement	a	train	and	test	split	of	your	data.	ˆ	How	to	implement	a	k-fold	cross-validation
split	of	your	data.	Let’s	get	started.	3.1	Description	The	goal	of	resampling	methods	is	to	make	the	best	use	of	your	training	data	in	order	to	accurately	estimate	the	performance	of	a	model	on	new	unseen	data.	Accurate	estimates	of	performance	can	then	be	used	to	help	you	choose	which	set	of	model	parameters	to	use	or	which	model	to	select.	Once
you	have	chosen	a	model,	you	can	train	for	final	model	on	the	entire	training	dataset	and	start	using	it	to	make	predictions.	There	are	two	common	resampling	methods	that	you	can	use:	ˆ	A	train	and	test	split	of	your	data.	ˆ	k-fold	cross-validation.	In	this	tutorial,	we	will	look	at	using	each	and	when	to	use	one	method	over	the	other.	3.2	Tutorial	This
tutorial	is	divided	into	3	parts:	1.	Train	and	Test	Split.	19	3.2.	Tutorial	20	2.	k-fold	Cross-Validation	Split.	3.	How	to	Choose	a	Resampling	Method.	These	steps	will	provide	the	foundations	you	need	to	handle	resampling	your	dataset	to	estimate	algorithm	performance	on	new	data.	3.2.1	Train	and	Test	Split	The	train	and	test	split	is	the	easiest
resampling	method.	As	such,	it	is	the	most	widely	used.	The	train	and	test	split	involves	separating	a	dataset	into	two	parts:	1.	Training	Dataset.	2.	Test	Dataset.	The	training	dataset	is	used	by	the	machine	learning	algorithm	to	train	the	model.	The	test	dataset	is	held	back	and	is	used	to	evaluate	the	performance	of	the	model.	The	rows	assigned	to
each	dataset	are	randomly	selected.	This	is	an	attempt	to	ensure	that	the	training	and	evaluation	of	a	model	is	objective.	If	multiple	algorithms	are	compared	or	multiple	configurations	of	the	same	algorithm	are	compared,	the	same	train	and	test	split	of	the	dataset	should	be	used.	This	is	to	ensure	that	the	comparison	of	performance	is	consistent	or
apples-to-apples.	We	can	achieve	this	by	seeding	the	random	number	generator	the	same	way	before	splitting	the	data,	or	by	holding	the	same	split	of	the	dataset	for	use	by	multiple	algorithms.	We	can	implement	the	train	and	test	split	of	a	dataset	in	a	single	function.	Below	is	a	function	named	train	test	split()	to	split	a	dataset	into	a	train	and	test
split.	It	accepts	two	arguments:	the	dataset	to	split	as	a	list	of	lists	and	an	optional	split	percentage.	A	default	split	percentage	of	0.6	or	60%	is	used.	This	will	assign	60%	of	the	dataset	to	the	training	dataset	and	leave	the	remaining	40%	to	the	test	dataset.	A	60/40	for	train/test	is	a	good	default	split	of	the	data.	The	function	first	calculates	how	many
rows	the	training	set	requires	from	the	provided	dataset.	A	copy	of	the	original	dataset	is	made.	Random	rows	are	selected	and	removed	from	the	copied	dataset	and	added	to	the	train	dataset	until	the	train	dataset	contains	the	target	number	of	rows.	The	rows	that	remain	in	the	copy	of	the	dataset	are	then	returned	as	the	test	dataset.	The
randrange()	function	from	the	random	model	is	used	to	generate	a	random	integer	in	the	range	between	0	and	the	size	of	the	list.	#	Split	a	dataset	into	a	train	and	test	set	def	train_test_split(dataset,	split=0.60):	train	=	list()	train_size	=	split	*	len(dataset)	dataset_copy	=	list(dataset)	while	len(train)	<	train_size:	index	=	randrange(len(dataset_copy))
train.append(dataset_copy.pop(index))	return	train,	dataset_copy	Listing	3.1:	Function	To	Split	a	Dataset.	3.2.	Tutorial	21	We	can	test	this	function	using	a	contrived	dataset	of	10	rows,	each	with	a	single	column.	The	complete	example	is	listed	below.	#	Example	of	Splitting	a	Contrived	Dataset	into	Train	and	Test	from	random	import	seed	from
random	import	randrange	#	Split	a	dataset	into	a	train	and	test	set	def	train_test_split(dataset,	split=0.60):	train	=	list()	train_size	=	split	*	len(dataset)	dataset_copy	=	list(dataset)	while	len(train)	<	train_size:	index	=	randrange(len(dataset_copy))	train.append(dataset_copy.pop(index))	return	train,	dataset_copy	#	test	train/test	split	seed(1)	dataset
=	[[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8],	[9],	[10]]	train,	test	=	train_test_split(dataset)	print(train)	print(test)	Listing	3.2:	Example	of	Splitting	a	Contrived	Dataset	into	Train	and	Test	Splits.	The	example	fixes	the	random	seed	before	splitting	the	training	dataset.	This	is	to	ensure	the	exact	same	split	of	the	data	is	made	every	time	the	code	is	executed.	This
is	handy	if	we	want	to	use	the	same	split	many	times	to	evaluate	and	compare	the	performance	of	different	algorithms.	Running	the	example	produces	the	output	below.	The	data	in	the	train	and	test	set	is	printed,	showing	that	6/10	or	60%	of	the	records	were	assigned	to	the	training	dataset	and	4/10	or	40%	of	the	records	were	assigned	to	the	test
set.	[[3],	[2],	[7],	[1],	[8],	[9]]	[[4],	[5],	[6],	[10]]	Listing	3.3:	Example	Output	from	Splitting	a	Dataset.	3.2.2	k-fold	Cross-Validation	Split	A	limitation	of	using	the	train	and	test	split	method	is	that	you	get	a	noisy	estimate	of	algorithm	performance.	The	k-fold	cross-validation	method	(also	called	just	cross-validation)	is	a	resampling	method	that	provides
a	more	accurate	estimate	of	algorithm	performance.	It	does	this	by	first	splitting	the	data	into	k	groups.	The	algorithm	is	then	trained	and	evaluated	k	times	and	the	performance	summarized	by	taking	the	mean	performance	score.	Each	group	of	data	is	called	a	fold,	hence	the	name	k-fold	cross-validation.	It	works	by	first	training	the	algorithm	on	the
k-1	groups	of	the	data	and	evaluating	it	on	the	kth	hold-out	group	as	the	test	set.	This	is	repeated	so	that	each	of	the	k	groups	is	given	an	opportunity	to	be	held	out	and	used	as	the	test	set.	As	such,	the	value	of	k	should	be	divisible	by	the	number	of	rows	in	your	training	dataset,	to	ensure	each	of	the	k	groups	has	the	same	number	of	rows.	You	should
choose	a	value	for	k	that	splits	the	data	into	groups	with	enough	rows	that	each	group	is	still	representative	of	the	original	dataset.	A	good	default	to	use	is	k=3	for	a	small	3.2.	Tutorial	22	dataset	or	k=10	for	a	larger	dataset.	A	quick	way	to	check	if	the	fold	sizes	are	representative	is	to	calculate	summary	statistics	such	as	mean	and	standard	deviation
and	see	how	much	the	values	differ	from	the	same	statistics	on	the	whole	dataset.	We	can	reuse	what	we	learned	in	the	previous	section	in	creating	a	train	and	test	split	here	in	implementing	k-fold	cross-validation.	Instead	of	two	groups,	we	must	return	k-folds	or	k	groups	of	data.	Below	is	a	function	named	cross	validation	split()	that	implements	the
cross-validation	split	of	data.	As	before,	we	create	a	copy	of	the	dataset	from	which	to	draw	randomly	chosen	rows.	We	calculate	the	size	of	each	fold	as	the	size	of	the	dataset	divided	by	the	number	of	folds	required.	fold	size	=	count(rows)	count(f	olds)	(3.1)	If	the	dataset	does	not	cleanly	divide	by	the	number	of	folds,	there	may	be	some	remainder
rows	and	they	will	not	be	used	in	the	split.	We	then	create	a	list	of	rows	with	the	required	size	and	add	them	to	a	list	of	folds	which	is	then	returned	at	the	end.	#	Split	a	dataset	into	$k$	folds	def	cross_validation_split(dataset,	folds=3):	dataset_split	=	list()	dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/	folds)	for	i	in	range(folds):	fold	=	list()
while	len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))	fold.append(dataset_copy.pop(index))	dataset_split.append(fold)	return	dataset_split	Listing	3.4:	Function	Create	A	Cross-Validation	Split.	We	can	test	this	resampling	method	on	the	same	small	contrived	dataset	as	above.	Each	row	has	only	a	single	column	value,	but	we	can	imagine
how	this	might	scale	to	a	standard	machine	learning	dataset.	The	complete	example	is	listed	below.	As	before,	we	fix	the	seed	for	the	random	number	generator	to	ensure	that	each	time	the	code	is	executed	that	the	same	rows	are	used	in	the	same	folds.	A	k	value	of	4	is	used	for	demonstration	purposes.	We	would	expect	that	the	10	rows	divided	into
4	folds	will	result	in	2	rows	per	fold,	with	a	remainder	of	2	that	will	not	be	used	in	the	split.	#	Example	of	Creating	a	Cross	Validation	Split	from	random	import	seed	from	random	import	randrange	#	Split	a	dataset	into	k	folds	def	cross_validation_split(dataset,	folds=3):	dataset_split	=	list()	dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/
folds)	for	_	in	range(folds):	fold	=	list()	while	len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))	fold.append(dataset_copy.pop(index))	dataset_split.append(fold)	3.3.	Extensions	23	return	dataset_split	#	test	cross	validation	split	seed(1)	dataset	=	[[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8],	[9],	[10]]	folds	=	cross_validation_split(dataset,	4)	print(folds)
Listing	3.5:	Example	of	a	Cross-Validation	Split	of	a	Contrived	Dataset.	Running	the	example	produces	the	output	below.	The	list	of	the	folds	is	printed,	showing	that	indeed	as	expected	there	are	two	rows	per	fold.	[[[3],	[2]],	[[7],	[1]],	[[8],	[9]],	[[10],	[6]]]	Listing	3.6:	Example	Output	from	Creating	a	Cross-Validation	Split.	3.2.3	How	to	Choose	a
Resampling	Method	The	gold	standard	for	estimating	the	performance	of	machine	learning	algorithms	on	new	data	is	k-fold	cross-validation.	When	well-configured,	k-fold	cross-validation	gives	a	robust	estimate	of	performance	compared	to	other	methods	such	as	the	train	and	test	split.	The	downside	of	cross-validation	is	that	it	can	be	time-consuming
to	run,	requiring	k	different	models	to	be	trained	and	evaluated.	This	is	a	problem	if	you	have	a	very	large	dataset	or	if	you	are	evaluating	a	model	that	takes	a	long	time	to	train.	The	train	and	test	split	resampling	method	is	the	most	widely	used.	This	is	because	it	is	easy	to	understand	and	implement,	and	because	it	gives	a	quick	estimate	of	algorithm
performance.	Only	a	single	model	is	constructed	and	evaluated.	Although	the	train	and	test	split	method	can	give	a	noisy	or	unreliable	estimate	of	the	performance	of	a	model	on	new	data,	this	becomes	less	of	a	problem	if	you	have	a	very	large	dataset.	Large	datasets	are	those	in	the	hundreds	of	thousands	or	millions	of	records,	large	enough	that
splitting	it	in	half	results	in	two	datasets	that	have	nearly	equivalent	statistical	properties.	In	such	cases,	there	may	be	little	need	to	use	k-fold	cross-validation	as	an	evaluation	of	the	algorithm	and	a	train	and	test	split	may	be	just	as	reliable.	3.3	Extensions	In	this	tutorial,	we	have	looked	at	the	two	most	common	resampling	methods.	There	are	other
methods	you	may	want	to	investigate	and	implement	as	extensions	to	this	tutorial.	For	example:	ˆ	Repeated	Train	and	Test.	This	is	where	the	train	and	test	split	is	used,	but	the	process	is	repeated	many	times.	ˆ	LOOCV	or	Leave	One	Out	Cross-Validation.	This	is	a	form	of	k-fold	cross-validation	where	the	value	of	k	is	fixed	at	1.	ˆ	Stratification.	In
classification	problems,	this	is	where	the	balance	of	class	values	in	each	group	is	forced	to	match	the	original	dataset.	3.4.	Review	3.4	24	Review	In	this	tutorial,	you	discovered	how	to	implement	resampling	methods	in	Python	from	scratch.	Specifically,	you	learned:	ˆ	How	to	implement	the	train	and	test	split	method.	ˆ	How	to	implement	the	k-fold
cross-validation	method.	ˆ	When	to	use	each	method.	3.4.1	Further	Reading	ˆ	Section	9.6,	Generate	pseudorandom	numbers,	The	Python	Standard	Library	ˆ	Section	5.1.	Cross	Validation,	page	176,	An	Introduction	to	Statistical	Learning,	2014.	ˆ	Section	18.4.	Evaluating	and	Choosing	the	Best	Hypothesis,	page	708,	Artificial	Intelligence:	A	Modern
Approach,	2010.	ˆ	Section	4.4	Resampling	Techniques,	page	69,	Applied	Predictive	Modeling,	2013	ˆ	Section	5.3,	Cross-validation,	page	149,	Data	Mining:	Practical	Machine	Learning	Tools	and	Techniques,	second	edition,	2005.	3.4.2	Next	In	the	next	tutorial,	you	will	discover	how	to	evaluate	the	predictions	made	by	predictive	modeling	algorithms.
Chapter	4	Evaluation	Metrics	After	you	make	predictions,	you	need	to	know	if	they	are	any	good.	There	are	standard	measures	that	we	can	use	to	summarize	how	good	a	set	of	predictions	actually	is.	Knowing	how	good	a	set	of	predictions	is	allows	you	to	make	estimates	about	the	skill	of	a	given	machine	learning	model	of	your	problem.	In	this
tutorial,	you	will	discover	how	to	implement	four	standard	prediction	evaluation	metrics	from	scratch	in	Python.	After	reading	this	tutorial,	you	will	know:	ˆ	How	to	implement	classification	accuracy.	ˆ	How	to	implement	and	interpret	a	confusion	matrix.	ˆ	How	to	implement	mean	absolute	error	for	regression.	ˆ	How	to	implement	root	mean	squared
error	for	regression.	Let’s	get	started.	4.1	Description	You	must	estimate	the	quality	of	a	set	of	predictions	when	training	a	machine	learning	model.	Performance	metrics	like	classification	accuracy	and	root	mean	squared	error	can	give	you	a	clear	objective	idea	of	how	good	a	set	of	predictions	is,	and	in	turn	how	good	the	model	is	that	generated
them.	This	is	important	as	it	allows	you	to	tell	the	difference	and	select	among:	ˆ	Different	transforms	of	the	data	used	to	train	the	same	machine	learning	model.	ˆ	Different	machine	learning	models	trained	on	the	same	data.	ˆ	Different	configurations	for	a	machine	learning	model	trained	on	the	same	data.	As	such,	performance	metrics	are	a	required
building	block	in	implementing	machine	learning	algorithms	from	scratch.	25	4.2.	Tutorial	4.2	26	Tutorial	This	tutorial	is	divided	into	4	parts:	1.	Classification	Accuracy.	2.	Confusion	Matrix.	3.	Mean	Absolute	Error.	4.	Root	Mean	Squared	Error.	These	steps	will	provide	the	foundations	you	need	to	handle	evaluating	predictions	made	by	machine
learning	algorithms.	4.2.1	Classification	Accuracy	A	quick	way	to	evaluate	a	set	of	predictions	on	a	classification	problem	is	by	using	accuracy.	Classification	accuracy	is	a	ratio	of	the	number	of	correct	predictions	out	of	all	predictions	that	were	made.	It	is	often	presented	as	a	percentage	between	0%	for	the	worst	possible	accuracy	and	100%	for	the
best	possible	accuracy.	accuracy	=	correct	predictions	×	100	total	predictions	(4.1)	We	can	implement	this	in	a	function	that	takes	the	expected	outcomes	and	the	predictions	as	arguments.	Below	is	this	function	named	accuracy	metric()	that	returns	classification	accuracy	as	a	percentage.	Notice	that	we	use	==	to	compare	the	equality	actual	to



predicted	values.	This	allows	us	to	compare	integers	or	strings,	two	main	data	types	that	we	may	choose	to	use	when	loading	classification	data.	#	Calculate	accuracy	percentage	between	two	lists	def	accuracy_metric(actual,	predicted):	correct	=	0	for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/	float(len(actual))	*
100.0	Listing	4.1:	Function	To	Calculate	Classification	Accuracy.	We	can	contrive	a	small	dataset	to	test	this	function.	Below	are	a	set	of	10	actual	and	predicted	integer	values.	There	are	two	mistakes	in	the	set	of	predictions.	actuall	0	0	0	0	0	1	1	1	1	predicted	0	1	0	0	0	1	0	1	1	4.2.	Tutorial	1	27	1	Listing	4.2:	Example	of	a	Set	of	Contrived	Predictions
and	Expected	Values.	Below	is	a	complete	example	with	this	dataset	to	test	the	accuracy	metric()	function.	#	Example	of	calculating	classification	accuracy	#	Calculate	accuracy	percentage	between	two	lists	def	accuracy_metric(actual,	predicted):	correct	=	0	for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/
float(len(actual))	*	100.0	#	Test	accuracy	actual	=	[0,0,0,0,0,1,1,1,1,1]	predicted	=	[0,1,0,0,0,1,0,1,1,1]	accuracy	=	accuracy_metric(actual,	predicted)	print(accuracy)	Listing	4.3:	Example	of	Calculating	Classification	Accuracy.	Running	this	example	produces	the	expected	accuracy	of	80%	or	8/10.	80.0	Listing	4.4:	Example	Output	From	Calculating
Classification	Accuracy.	Accuracy	is	a	good	metric	to	use	when	you	have	a	small	number	of	class	values,	such	as	2,	also	called	a	binary	classification	problem.	Accuracy	starts	to	lose	it’s	meaning	when	you	have	more	class	values	and	you	may	need	to	review	a	different	perspective	on	the	results,	such	as	a	confusion	matrix.	4.2.2	Confusion	Matrix	A
confusion	matrix	provides	a	summary	of	all	of	the	predictions	made	compared	to	the	expected	actual	values.	The	results	are	presented	in	a	matrix	with	counts	in	each	cell.	The	counts	of	predicted	class	values	are	summarized	horizontally	(rows),	whereas	the	counts	of	actual	values	for	each	class	values	are	presented	vertically	(columns).	A	perfect	set
of	predictions	is	shown	as	a	diagonal	line	from	the	top	left	to	the	bottom	right	of	the	matrix.	The	value	of	a	confusion	matrix	for	classification	problems	is	that	you	can	clearly	see	which	predictions	were	wrong	and	the	type	of	mistake	that	was	made.	Let’s	create	a	function	to	calculate	a	confusion	matrix.	We	can	start	off	by	defining	the	function	to
calculate	the	confusion	matrix	given	a	list	of	actual	class	values	and	a	list	of	predictions.	The	function	is	listed	below	and	is	named	confusion	matrix().	It	first	makes	a	list	of	all	of	the	unique	class	values	and	assigns	each	class	value	a	unique	integer	or	index	into	the	confusion	matrix.	The	confusion	matrix	is	always	square,	with	the	number	of	class
values	indicating	the	number	of	rows	and	columns	required.	Here,	the	first	index	into	the	matrix	is	the	row	for	actual	values	and	the	second	is	the	column	for	predicted	values.	After	the	square	confusion	matrix	is	created	and	initialized	to	zero	counts	in	each	cell,	it	is	a	matter	of	looping	through	all	predictions	and	4.2.	Tutorial	28	incrementing	the
count	in	each	cell.	The	function	returns	two	objects.	The	first	is	the	set	of	unique	class	values,	so	that	they	can	be	displayed	when	the	confusion	matrix	is	drawn.	The	second	is	the	confusion	matrix	itself	with	the	counts	in	each	cell.	#	calculate	a	confusion	matrix	def	confusion_matrix(actual,	predicted):	unique	=	set(actual)	matrix	=	[list()	for	x	in
range(len(unique))]	for	i	in	range(len(unique)):	matrix[i]	=	[0	for	x	in	range(len(unique))]	lookup	=	dict()	for	i,	value	in	enumerate(unique):	lookup[value]	=	i	for	i	in	range(len(actual)):	x	=	lookup[actual[i]]	y	=	lookup[predicted[i]]	matrix[y][x]	+=	1	return	unique,	matrix	Listing	4.5:	Function	To	Calculate	a	Confusion	Matrix.	Let’s	make	this	concrete
with	an	example.	Below	is	another	contrived	dataset,	this	time	with	3	mistakes.	actual	0	0	0	0	0	1	1	1	1	1	predicted	0	1	1	0	0	1	0	1	1	1	Listing	4.6:	Example	of	a	Set	of	Contrived	Predictions	and	Expected	Values.	We	can	calculate	and	print	the	confusion	matrix	for	this	dataset	as	follows:	#	Example	of	Calculating	a	Confusion	Matrix	#	calculate	a
confusion	matrix	def	confusion_matrix(actual,	predicted):	unique	=	set(actual)	matrix	=	[list()	for	x	in	range(len(unique))]	for	i	in	range(len(unique)):	matrix[i]	=	[0	for	x	in	range(len(unique))]	lookup	=	dict()	for	i,	value	in	enumerate(unique):	lookup[value]	=	i	for	i	in	range(len(actual)):	x	=	lookup[actual[i]]	y	=	lookup[predicted[i]]	matrix[y][x]	+=	1
return	unique,	matrix	4.2.	Tutorial	29	#	Test	confusion	matrix	with	integers	actual	=	[0,0,0,0,0,1,1,1,1,1]	predicted	=	[0,1,1,0,0,1,0,1,1,1]	unique,	matrix	=	confusion_matrix(actual,	predicted)	print(unique)	print(matrix)	Listing	4.7:	Example	of	Calculating	a	Confusion	Matrix.	Running	the	example	produces	the	output	below.	The	example	first	prints
the	list	of	unique	values	and	then	the	confusion	matrix.	{0,	1}	[[3,	1],	[2,	4]]	Listing	4.8:	Example	Output	From	Calculating	a	Confusion	Matrix.	It’s	hard	to	interpret	the	results	this	way.	It	would	help	if	we	could	display	the	matrix	as	intended	with	rows	and	columns.	Below	is	a	function	to	correctly	display	the	matrix.	The	function	is	named	print
confusion	matrix().	It	names	the	columns	as	Z	for	Actual	and	the	rows	as	P	for	Predicted.	Each	column	and	row	are	named	for	the	class	value	to	which	it	corresponds.	The	matrix	is	laid	out	with	the	expectation	that	each	class	label	is	a	single	character	or	single	digit	integer	and	that	the	counts	are	also	single	digit	integers.	You	could	extend	it	to	handle
large	class	labels	or	prediction	counts	as	an	exercise.	#	pretty	print	a	confusion	matrix	def	print_confusion_matrix(unique,	matrix):	print('(A)'	+	'	'.join(str(x)	for	x	in	unique))	print('(P)---')	for	i,	x	in	enumerate(unique):	print("%s|	%s"	%	(x,	'	'.join(str(x)	for	x	in	matrix[i])))	Listing	4.9:	Function	To	Pretty	Print	a	Confusion	Matrix.	We	can	piece	together	all
of	the	functions	and	display	a	human	readable	confusion	matrix	#	Example	of	Calculating	and	Displaying	a	Pretty	Confusion	Matrix	#	calculate	a	confusion	matrix	def	confusion_matrix(actual,	predicted):	unique	=	set(actual)	matrix	=	[list()	for	x	in	range(len(unique))]	for	i	in	range(len(unique)):	matrix[i]	=	[0	for	x	in	range(len(unique))]	lookup	=	dict()
for	i,	value	in	enumerate(unique):	lookup[value]	=	i	for	i	in	range(len(actual)):	x	=	lookup[actual[i]]	y	=	lookup[predicted[i]]	matrix[y][x]	+=	1	return	unique,	matrix	#	pretty	print	a	confusion	matrix	def	print_confusion_matrix(unique,	matrix):	print('(A)'	+	'	'.join(str(x)	for	x	in	unique))	4.2.	Tutorial	30	print('(P)---')	for	i,	x	in	enumerate(unique):
print("%s|	%s"	%	(x,	'	'.join(str(x)	for	x	in	matrix[i])))	#	Test	confusion	matrix	with	integers	actual	=	[0,0,0,0,0,1,1,1,1,1]	predicted	=	[0,1,1,0,0,1,0,1,1,1]	unique,	matrix	=	confusion_matrix(actual,	predicted)	print_confusion_matrix(unique,	matrix)	Listing	4.10:	Example	of	Calculating	and	Displaying	a	Pretty	Confusion	Matrix.	Running	the	example
produces	the	output	below.	We	can	see	the	class	labels	of	0	and	1	across	the	top	and	bottom.	Looking	down	the	diagonal	of	the	matrix	from	the	top	left	to	bottom	right,	we	can	see	that	3	predictions	of	0	were	correct	and	4	predictions	of	1	were	correct.	Looking	in	the	other	cells,	we	can	see	2	+	1	or	3	prediction	errors.	We	can	see	that	2	predictions
were	made	as	a	1	that	were	in	fact	actually	a	0	class	value.	And	we	can	see	1	prediction	that	was	a	0	that	was	in	fact	actually	a	1.	(A)0	1	(P)--0|	3	1	1|	2	4	Listing	4.11:	Example	Output	From	Printing	a	Pretty	Confusion	Matrix.	A	confusion	matrix	is	always	a	good	idea	to	use	in	addition	to	classification	accuracy	to	help	interpret	the	predictions.	4.2.3
Mean	Absolute	Error	Regression	problems	are	those	where	a	real	value	is	predicted.	An	easy	metric	to	consider	is	the	error	in	the	predicted	values	as	compared	to	the	expected	values.	The	Mean	Absolute	Error	or	MAE	for	short	is	a	good	first	error	metric	to	use.	It	is	calculated	as	the	average	of	the	absolute	error	values,	where	absolute	means	made
positive	so	that	they	can	be	added	together.	Pn	abs(predictedi	−	actuali	)	M	AE	=	i=1	(4.2)	total	predictions	Below	is	a	function	named	mae	metric()	that	implements	this	metric.	As	above,	it	expects	a	list	of	actual	outcome	values	and	a	list	of	predictions.	We	use	the	built-in	abs()	Python	function	to	calculate	the	absolute	error	values	that	are	summed
together.	#	Calculate	mean	absolute	error	def	mae_metric(actual,	predicted):	sum_error	=	0.0	for	i	in	range(len(actual)):	sum_error	+=	abs(predicted[i]	-	actual[i])	return	sum_error	/	float(len(actual))	Listing	4.12:	Function	To	Calculate	Mean	Absolute	Error.	We	can	contrive	a	small	regression	dataset	to	test	this	function.	4.2.	Tutorial	actual	0.1	0.2
0.3	0.4	0.5	31	predicted	0.11	0.19	0.29	0.41	0.5	Listing	4.13:	Small	Set	of	Contrived	Regression	Predictions	and	Actual	Values.	Only	one	prediction	(0.5)	is	correct,	whereas	all	other	predictions	are	wrong	by	0.01.	Therefore,	we	would	expect	the	mean	absolute	error	(or	the	average	positive	error)	for	these	predictions	to	be	a	little	less	than	0.01.	Below
is	an	example	that	tests	the	mae	metric()	function	with	the	contrived	dataset.	#	Example	of	Calculating	Mean	Absolute	Error	#	Calculate	mean	absolute	error	def	mae_metric(actual,	predicted):	sum_error	=	0.0	for	i	in	range(len(actual)):	sum_error	+=	abs(predicted[i]	-	actual[i])	return	sum_error	/	float(len(actual))	#	Test	RMSE	actual	=	[0.1,	0.2,	0.3,
0.4,	0.5]	predicted	=	[0.11,	0.19,	0.29,	0.41,	0.5]	mae	=	mae_metric(actual,	predicted)	print(mae)	Listing	4.14:	Example	of	Calculating	Mean	Absolute	Error.	Running	this	example	prints	the	output	below.	We	can	see	that	as	expected,	the	MAE	was	about	0.008,	a	small	value	slightly	lower	than	0.01.	0.007999999999999993	Listing	4.15:	Example
Output	From	Calculating	the	Mean	Absolute	Error.	4.2.4	Root	Mean	Squared	Error	Another	popular	way	to	calculate	the	error	in	a	set	of	regression	predictions	is	to	use	the	Root	Mean	Squared	Error.	Shortened	as	RMSE,	the	metric	is	sometimes	called	Mean	Squared	Error	or	MSE,	dropping	the	Root	part	from	the	calculation	and	the	name.	RMSE	is
calculated	as	the	square	root	of	the	mean	of	the	squared	differences	between	actual	outcomes	and	predictions.	Squaring	each	error	forces	the	values	to	be	positive,	and	the	square	root	of	the	mean	squared	error	returns	the	error	metric	back	to	the	original	units	for	comparison.	sP	n	2	i=1	(predictedi	−	actuali	)	RM	SE	=	(4.3)	total	predictions	Below	is
an	implementation	of	this	in	a	function	named	rmse	metric().	It	uses	the	sqrt()	function	from	the	math	module	and	uses	the	**	operator	to	raise	the	error	to	the	2nd	power.	4.3.	Extensions	32	#	Calculate	root	mean	squared	error	def	rmse_metric(actual,	predicted):	sum_error	=	0.0	for	i	in	range(len(actual)):	prediction_error	=	predicted[i]	-	actual[i]
sum_error	+=	(prediction_error	**	2)	mean_error	=	sum_error	/	float(len(actual))	return	sqrt(mean_error)	Listing	4.16:	Function	To	Calculate	Root	Mean	Squared	Error.	We	can	test	this	metric	on	the	same	dataset	used	to	test	the	calculation	of	Mean	Absolute	Error	above.	Below	is	a	complete	example.	Again,	we	would	expect	an	error	value	to	be
generally	close	to	0.01.	#	Example	of	Calculating	the	Root	Mean	Squared	Error	from	math	import	sqrt	#	Calculate	root	mean	squared	error	def	rmse_metric(actual,	predicted):	sum_error	=	0.0	for	i	in	range(len(actual)):	prediction_error	=	predicted[i]	-	actual[i]	sum_error	+=	(prediction_error	**	2)	mean_error	=	sum_error	/	float(len(actual))	return
sqrt(mean_error)	#	Test	RMSE	actual	=	[0.1,	0.2,	0.3,	0.4,	0.5]	predicted	=	[0.11,	0.19,	0.29,	0.41,	0.5]	rmse	=	rmse_metric(actual,	predicted)	print(rmse)	Listing	4.17:	Example	of	Calculating	Root	Mean	Squared	Error.	Running	the	example,	we	see	the	results	below.	The	result	is	slightly	higher	at	0.0089.	RMSE	values	are	always	slightly	higher	than
MSE	values,	which	becomes	more	pronounced	as	the	prediction	errors	increase.	This	is	a	benefit	of	using	RMSE	over	MSE	in	that	it	penalizes	larger	errors	with	worse	scores.	0.00894427190999915	Listing	4.18:	Example	Output	From	Calculating	the	Root	Mean	Squared	Error.	4.3	Extensions	You	have	only	seen	a	small	sample	of	the	most	widely	used
performance	metrics.	There	are	many	other	performance	metrics	that	you	may	require.	Below	is	a	list	of	5	additional	performance	metrics	that	you	may	wish	to	implement	to	extend	this	tutorial	ˆ	Precision	for	classification.	ˆ	Recall	for	classification.	4.4.	Review	33	ˆ	F1	for	classification.	ˆ	Area	Under	ROC	Curve	or	AUC	for	classification.	ˆ	Goodness	of
Fit	or	R2	(R	squared)	for	regression.	4.4	Review	In	this	tutorial,	you	discovered	how	to	implement	algorithm	prediction	performance	metrics	from	scratch	in	Python.	Specifically,	you	learned:	ˆ	How	to	implement	and	interpret	classification	accuracy.	ˆ	How	to	implement	and	interpret	the	confusion	matrix	for	classification	problems.	ˆ	How	to	implement
and	interpret	mean	absolute	error	for	regression.	ˆ	How	to	implement	and	interpret	root	mean	squared	error	for	regression.	4.4.1	Further	Reading	ˆ	Section	9.2,	Mathematical	functions,	The	Python	Standard	Library	4.4.2	Next	In	the	next	tutorial,	you	will	discover	how	to	develop	a	baseline	of	performance	on	your	predictive	modeling	problem.
Chapter	5	Baseline	Models	It	is	important	to	establish	baseline	performance	on	a	predictive	modeling	problem.	A	baseline	provides	a	point	of	comparison	for	the	more	advanced	methods	that	you	evaluate	later.	In	this	tutorial,	you	will	discover	how	to	implement	baseline	machine	learning	algorithms	from	scratch	in	Python.	After	completing	this
tutorial,	you	will	know:	ˆ	How	to	implement	the	random	prediction	algorithm.	ˆ	How	to	implement	the	zero	rule	prediction	algorithm.	Let’s	get	started.	5.1	Description	There	are	many	machine	learning	algorithms	to	choose	from.	Hundreds	in	fact.	You	must	know	whether	the	predictions	for	a	given	algorithm	are	good	or	not.	But	how	do	you	know?
The	answer	is	to	use	a	baseline	prediction	algorithm.	A	baseline	prediction	algorithm	provides	a	set	of	predictions	that	you	can	evaluate	as	you	would	any	predictions	for	your	problem,	such	as	classification	accuracy	or	RMSE.	The	scores	from	these	algorithms	provide	the	required	point	of	comparison	when	evaluating	all	other	machine	learning
algorithms	on	your	problem.	Once	established,	you	can	comment	on	how	much	better	a	given	algorithm	is	as	compared	to	the	naive	baseline	algorithm,	providing	context	on	just	how	good	a	given	method	actually	is.	The	two	most	commonly	used	baseline	algorithms	are:	ˆ	Random	Prediction	Algorithm.	ˆ	Zero	Rule	Algorithm.	When	starting	on	a	new
problem	that	is	more	difficult	than	a	conventional	classification	or	regression	problem,	it	is	a	good	idea	to	first	devise	a	random	prediction	algorithm	that	is	specific	to	your	prediction	problem.	Later	you	can	improve	upon	this	and	devise	a	zero	rule	algorithm.	Let’s	implement	these	algorithms	and	see	how	they	work.	34	5.2.	Tutorial	5.2	35	Tutorial
This	tutorial	is	divided	into	2	parts:	1.	Random	Prediction	Algorithm.	2.	Zero	Rule	Algorithm.	These	steps	will	provide	the	foundations	you	need	to	handle	implementing	and	calculating	baseline	performance	for	your	machine	learning	algorithms.	5.2.1	Random	Prediction	Algorithm	The	random	prediction	algorithm	predicts	a	random	outcome	as
observed	in	the	training	data.	It	is	perhaps	the	simplest	algorithm	to	implement.	It	requires	that	you	store	all	of	the	distinct	outcome	values	in	the	training	data,	which	could	be	large	on	regression	problems	with	lots	of	distinct	values.	Because	random	numbers	are	used	to	make	decisions,	it	is	a	good	idea	to	fix	the	random	number	seed	prior	to	using
the	algorithm.	This	is	to	ensure	that	we	get	the	same	set	of	random	numbers,	and	in	turn	the	same	decisions	each	time	the	algorithm	is	run.	Below	is	an	implementation	of	the	Random	Prediction	Algorithm	in	a	function	named	random	algorithm().	The	function	takes	both	a	training	dataset	that	includes	output	values	and	a	test	dataset	for	which	output
values	must	be	predicted.	The	function	will	work	for	both	classification	and	regression	problems.	It	assumes	that	the	output	value	in	the	training	data	is	the	final	column	for	each	row.	First,	the	set	of	unique	output	values	is	collected	from	the	training	data.	Then	a	randomly	selected	output	value	from	the	set	is	selected	for	each	row	in	the	test	set.	#
Generate	random	predictions	def	random_algorithm(train,	test):	output_values	=	[row[-1]	for	row	in	train]	unique	=	list(set(output_values))	predicted	=	list()	for	row	in	test:	index	=	randrange(len(unique))	predicted.append(unique[index])	return	predicted	Listing	5.1:	Function	To	Make	Random	Predictions.	We	can	test	this	function	with	a	small
dataset	that	only	contains	the	output	column	for	simplicity.	The	output	values	in	the	training	dataset	are	either	0	or	1,	meaning	that	the	set	of	predictions	the	algorithm	will	choose	from	is	(0,	1).	The	test	set	also	contains	a	single	column,	with	no	data	as	the	predictions	are	not	known.	#	Example	of	Making	Random	Predictions	from	random	import
seed	from	random	import	randrange	#	Generate	random	predictions	def	random_algorithm(train,	test):	output_values	=	[row[-1]	for	row	in	train]	5.2.	Tutorial	36	unique	=	list(set(output_values))	predicted	=	list()	for	_	in	test:	index	=	randrange(len(unique))	predicted.append(unique[index])	return	predicted	seed(1)	train	=	[[0],	[1],	[0],	[1],	[0],	[1]]
test	=	[[None],	[None],	[None],	[None]]	predictions	=	random_algorithm(train,	test)	print(predictions)	Listing	5.2:	Example	of	Making	Random	Predictions.	Running	the	example	calculates	random	predictions	for	the	test	dataset	and	prints	those	predictions.	[0,	0,	1,	0]	Listing	5.3:	Example	Output	From	Making	Random	Predictions.	The	random
prediction	algorithm	is	easy	to	implement	and	fast	to	run,	but	we	could	do	better	as	a	baseline.	5.2.2	Zero	Rule	Algorithm	The	Zero	Rule	Algorithm	is	a	better	baseline	than	the	random	algorithm.	It	uses	more	information	about	a	given	problem	to	create	one	rule	in	order	to	make	predictions.	This	rule	is	different	depending	on	the	problem	type.	Let’s
start	with	classification	problems,	predicting	a	class	label.	Classification	For	classification	problems,	the	one	rule	is	to	predict	the	class	value	that	is	most	common	in	the	training	dataset.	This	means	that	if	a	training	dataset	has	90	instances	of	class	0	and	10	instances	of	class	1	that	it	will	predict	0	and	achieve	a	baseline	accuracy	of	90/100	or	90%.
This	is	much	better	than	the	random	prediction	algorithm	that	would	only	achieve	82%	accuracy	on	average.	For	details	on	how	this	is	estimate	for	random	search	is	calculated,	see	below:	=	((0.9	×	0.9)	+	(0.1	×	0.1))	×	100	=	82%	(5.1)	Below	is	a	function	named	zero	rule	algorithm	classification()	that	implements	this	for	the	classification	case.	#
zero	rule	algorithm	for	classification	def	zero_rule_algorithm_classification(train,	test):	output_values	=	[row[-1]	for	row	in	train]	prediction	=	max(set(output_values),	key=output_values.count)	predicted	=	[prediction	for	i	in	range(len(test))]	return	predicted	5.2.	Tutorial	37	Listing	5.4:	Function	To	Make	Zero	Rule	Classification	Predictions.	The
function	makes	use	of	the	max()	function	with	the	key	attribute,	which	is	a	little	clever.	Given	a	list	of	class	values	observed	in	the	training	data,	the	max()	function	takes	a	set	of	unique	class	values	and	calls	the	count	on	the	list	of	class	values	for	each	class	value	in	the	set.	The	result	is	that	it	returns	the	class	value	that	has	the	highest	count	of
observed	values	in	the	list	of	class	values	observed	in	the	training	dataset.	If	all	class	values	have	the	same	count,	then	we	will	choose	the	first	class	value	observed	in	the	dataset.	Once	we	select	a	class	value,	it	is	used	to	make	a	prediction	for	each	row	in	the	test	dataset.	Below	is	a	worked	example	with	a	contrived	dataset	that	contains	4	examples	of
class	0	and	2	examples	of	class	1.	We	would	expect	the	algorithm	to	choose	the	class	value	0	as	the	prediction	for	each	row	in	the	test	dataset.	#	Example	of	Zero	Rule	Classification	Predictions	from	random	import	seed	#	zero	rule	algorithm	for	classification	def	zero_rule_algorithm_classification(train,	test):	output_values	=	[row[-1]	for	row	in	train]
prediction	=	max(set(output_values),	key=output_values.count)	predicted	=	[prediction	for	i	in	range(len(test))]	return	predicted	seed(1)	train	=	[['0'],	['0'],	['0'],	['0'],	['1'],	['1']]	test	=	[[None],	[None],	[None],	[None]]	predictions	=	zero_rule_algorithm_classification(train,	test)	print(predictions)	Listing	5.5:	Example	of	Zero	Rule	Classification
Predictions.	Running	this	example	makes	the	predictions	and	prints	them	to	screen.	As	expected,	the	class	value	of	0	was	chosen	and	predicted.	['0',	'0',	'0',	'0']	Listing	5.6:	Example	Output	From	Making	Zero	Rule	Classification	Predictions.	Regression	Regression	problems	require	the	prediction	of	a	real	value.	A	good	default	prediction	for	real	values
is	to	predict	the	central	tendency.	This	could	be	the	mean	or	the	median.	A	good	default	is	to	use	the	mean	(also	called	the	average)	of	the	output	value	observed	in	the	training	data.	This	is	likely	to	have	a	lower	error	than	random	prediction	which	will	return	any	observed	output	value.	Below	is	a	function	to	do	that	named	zero	rule	algorithm
regression().	It	works	by	calculating	the	mean	value	for	the	observed	output	values.	Pn	i=1	valuei	mean	=	(5.2)	count(values)	Once	calculated,	the	mean	is	then	predicted	for	each	row	in	the	training	data.	5.2.	Tutorial	38	#	zero	rule	algorithm	for	regression	def	zero_rule_algorithm_regression(train,	test):	output_values	=	[row[-1]	for	row	in	train]
prediction	=	sum(output_values)	/	float(len(output_values))	predicted	=	[prediction	for	i	in	range(len(test))]	return	predicted	Listing	5.7:	Function	To	Make	Zero	Rule	Regression	Predictions.	This	function	can	be	tested	with	a	simple	example.	We	can	contrive	a	small	dataset	where	the	mean	value	is	known	to	be	15.	10	15	12	15	18	20	mean	=	(10	+	15
+	12	+	15	+	18	+	20)	/	6	mean	=	90	/	6	mean	=	15	Listing	5.8:	Contrived	Regression	Dataset	And	Expected	Mean.	Below	is	the	complete	example.	We	would	expect	that	the	mean	value	of	15	will	be	predicted	for	each	of	the	4	rows	in	the	test	dataset.	#	Example	of	Zero	Rule	Regression	Predictions	from	random	import	seed	#	zero	rule	algorithm	for
regression	def	zero_rule_algorithm_regression(train,	test):	output_values	=	[row[-1]	for	row	in	train]	prediction	=	sum(output_values)	/	float(len(output_values))	predicted	=	[prediction	for	i	in	range(len(test))]	return	predicted	seed(1)	train	=	[[10],	[15],	[12],	[15],	[18],	[20]]	test	=	[[None],	[None],	[None],	[None]]	predictions	=
zero_rule_algorithm_regression(train,	test)	print(predictions)	Listing	5.9:	Example	of	Zero	Rule	Regression	Predictions.	Running	the	example	calculates	the	predicted	output	values	that	are	printed.	As	expected,	the	mean	value	of	15	is	predicted	for	each	row	in	the	test	dataset.	[15.0,	15.0,	15.0,	15.0]	Listing	5.10:	Example	Output	From	Making	Zero
Rule	Regression	Predictions.	5.3.	Extensions	5.3	39	Extensions	Below	are	a	few	extensions	to	the	baseline	algorithms	that	you	may	wish	to	investigate	and	implement	as	an	extension	to	this	tutorial.	ˆ	Alternate	Central	Tendency	where	the	median,	mode	or	other	central	tendency	calculations	are	predicted	instead	of	the	mean.	ˆ	Moving	Average	for
time	series	problems	where	the	mean	of	the	last	n	records	is	predicted.	5.4	Review	In	this	tutorial,	you	discovered	the	importance	of	calculating	a	baseline	of	performance	on	your	machine	learning	problem.	You	now	know:	ˆ	How	to	implement	a	random	prediction	algorithm	for	classification	and	regression	problems.	ˆ	How	to	implement	a	zero	rule
algorithm	for	classification	and	regression	problems.	5.4.1	Next	This	tutorial	ends	Part	1	on	data	preparation.	Next,	you	will	start	Part	2	on	linear	algorithms.	In	the	next	tutorial,	you	will	discover	how	to	implement	a	test	harness	to	evaluate	predictive	modeling	algorithms	consistently.	Part	II	Linear	Algorithms	40	Chapter	6	Algorithm	Test	Harnesses
We	cannot	know	which	algorithm	will	be	best	for	a	given	problem.	Therefore,	we	need	to	design	a	test	harness	that	we	can	use	to	evaluate	different	machine	learning	algorithms.	In	this	tutorial,	you	will	discover	how	to	develop	a	machine	learning	algorithm	test	harness	from	scratch	in	Python.	After	completing	this	tutorial,	you	will	know:	ˆ	How	to
implement	a	train-test	algorithm	test	harness.	ˆ	How	to	implement	a	k-fold	cross-validation	algorithm	test	harness.	Let’s	get	started.	6.1	Description	A	test	harness	provides	a	consistent	way	to	evaluate	machine	learning	algorithms	on	a	dataset.	It	involves	3	elements:	1.	The	resampling	method	to	split-up	the	dataset.	2.	The	machine	learning	algorithm
to	evaluate.	3.	The	performance	measure	by	which	to	evaluate	predictions.	The	loading	and	preparation	of	a	dataset	is	a	prerequisite	step	that	must	have	been	completed	prior	to	using	the	test	harness.	The	test	harness	must	allow	for	different	machine	learning	algorithms	to	be	evaluated,	whilst	the	dataset,	resampling	method	and	performance
measures	are	kept	constant.	In	this	tutorial,	we	are	going	to	demonstrate	the	test	harnesses	with	a	real	dataset.	6.1.1	Pima	Indians	Diabetes	Dataset	In	this	tutorial	we	will	use	the	Pima	Indians	Diabetes	Dataset.	This	dataset	involves	the	prediction	of	the	onset	of	diabetes	within	5	years.	The	baseline	performance	on	the	problem	is	approximately	65%.
You	can	learn	more	about	it	in	Appendix	A,	Section	A.4.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	pima-indians-diabetes.csv.	41	6.2.	Tutorial	6.2	42	Tutorial	This	tutorial	is	broken	down	into	two	main	sections:	1.	Train-Test	Algorithm	Test	Harness.	2.	Cross-Validation	Algorithm	Test	Harness.	These	test
harnesses	will	give	you	the	foundation	that	you	need	to	evaluate	a	suite	of	machine	learning	algorithms	on	a	given	predictive	modeling	problem.	6.2.1	Train-Test	Algorithm	Test	Harness	The	train-test	split	is	a	simple	resampling	method	that	can	be	used	to	evaluate	a	machine	learning	algorithm.	As	such,	it	is	a	good	starting	point	for	developing	a	test
harness.	We	can	assume	the	prior	development	of	a	function	to	split	a	dataset	into	train	and	test	sets	and	a	function	to	evaluate	the	accuracy	of	a	set	of	predictions.	We	need	a	function	that	can	take	a	dataset	and	an	algorithm	and	return	a	performance	score.	Below	is	a	function	named	evaluate	algorithm()	that	achieves	this.	It	takes	3	fixed	arguments
including	the	dataset,	the	algorithm	function	and	the	split	percentage	for	the	train-test	split.	First,	the	dataset	is	split	into	train	and	test	elements.	Next,	a	copy	of	the	test	set	is	made	and	each	output	value	is	cleared	by	setting	it	to	the	None	value	to	prevent	the	algorithm	from	cheating	accidentally.	The	algorithm	provided	as	a	parameter	is	a	function
that	expects	the	train	and	test	datasets	on	which	to	prepare	and	then	make	predictions.	The	algorithm	may	require	additional	configuration	parameters.	This	is	handled	by	using	the	variable	arguments	*args	in	the	evaluate	algorithm()	function	and	passing	them	on	to	the	algorithm	function.	The	algorithm	function	is	expected	to	return	a	list	of
predictions,	one	for	each	row	in	the	training	dataset.	These	are	compared	to	the	actual	output	values	from	the	unmodified	test	dataset	by	the	accuracy	metric()	function.	Finally,	the	accuracy	is	returned.	#	Evaluate	an	algorithm	using	a	train/test	split	def	evaluate_algorithm(dataset,	algorithm,	split,	*args):	train,	test	=	train_test_split(dataset,	split)
test_set	=	list()	for	row	in	test:	row_copy	=	list(row)	row_copy[-1]	=	None	test_set.append(row_copy)	predicted	=	algorithm(train,	test_set,	*args)	actual	=	[row[-1]	for	row	in	test]	accuracy	=	accuracy_metric(actual,	predicted)	return	accuracy	Listing	6.1:	Function	To	Evaluate	An	Algorithm	Using	a	Train/Test	Split.	The	evaluation	function	does	make
some	strong	assumptions,	but	they	can	easily	be	changed	if	needed.	Specifically,	it	assumes	that	the	last	row	in	the	dataset	is	always	the	output	value.	A	different	column	could	be	used.	The	use	of	the	accuracy	metric()	assumes	that	the	problem	is	a	classification	problem,	but	this	could	be	changed	to	mean	squared	error	for	regression	problems.	6.2.
Tutorial	43	Let’s	piece	this	together	with	a	worked	example.	We	will	use	the	Pima	Indians	Diabetes	dataset	and	evaluate	the	Zero	Rule	algorithm.	#	Example	of	a	Train-Test	Test	Harness	from	random	import	seed	from	random	import	randrange	from	csv	import	reader	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as
file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Split	a	dataset	into	a	train	and	test	set	def	train_test_split(dataset,	split):	train	=	list()	train_size	=	split	*
len(dataset)	dataset_copy	=	list(dataset)	while	len(train)	<	train_size:	index	=	randrange(len(dataset_copy))	train.append(dataset_copy.pop(index))	return	train,	dataset_copy	#	Calculate	accuracy	percentage	def	accuracy_metric(actual,	predicted):	correct	=	0	for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/
float(len(actual))	*	100.0	#	Evaluate	an	algorithm	using	a	train/test	split	def	evaluate_algorithm(dataset,	algorithm,	split,	*args):	train,	test	=	train_test_split(dataset,	split)	test_set	=	list()	for	row	in	test:	row_copy	=	list(row)	row_copy[-1]	=	None	test_set.append(row_copy)	predicted	=	algorithm(train,	test_set,	*args)	actual	=	[row[-1]	for	row	in	test]
accuracy	=	accuracy_metric(actual,	predicted)	return	accuracy	#	zero	rule	algorithm	for	classification	6.2.	Tutorial	44	def	zero_rule_algorithm_classification(train,	test):	output_values	=	[row[-1]	for	row	in	train]	prediction	=	max(set(output_values),	key=output_values.count)	predicted	=	[prediction	for	i	in	range(len(test))]	return	predicted	#	Test	the
train/test	harness	seed(1)	#	load	and	prepare	data	filename	=	'pima-indians-diabetes.csv'	dataset	=	load_csv(filename)	for	i	in	range(len(dataset[0])):	str_column_to_float(dataset,	i)	#	evaluate	algorithm	split	=	0.6	accuracy	=	evaluate_algorithm(dataset,	zero_rule_algorithm_classification,	split)	print('Accuracy:	%.3f%%'	%	(accuracy))	Listing	6.2:
Example	of	Train/Test	Algorithm	Test	Harness	on	the	Diabetes	Dataset.	The	dataset	was	split	into	60%	for	training	the	model	and	40%	for	evaluating	it.	Notice	how	the	name	of	the	Zero	Rule	algorithm	zero	rule	algorithm	classification	was	passed	as	an	argument	to	the	evaluate	algorithm()	function.	You	can	see	how	this	test	harness	may	be	used
again	and	again	with	different	algorithms.	Running	the	example	above	prints	out	the	accuracy	of	the	model.	Accuracy:	67.427%	Listing	6.3:	Example	Output	From	Using	the	Train/Test	Split.	6.2.2	Cross-Validation	Algorithm	Test	Harness	Cross-validation	is	a	resampling	technique	that	provides	more	reliable	estimates	of	algorithm	performance	on
unseen	data.	It	requires	the	creation	and	evaluation	of	k	models	on	different	subsets	of	your	data,	and	as	such	is	more	computationally	expensive.	Nevertheless,	it	is	the	gold	standard	for	evaluating	machine	learning	algorithms.	As	in	the	previous	section,	we	need	to	create	a	function	that	ties	together	the	resampling	method,	the	evaluation	of	the
algorithm	on	the	dataset	and	the	performance	calculation	method.	Unlike	above,	the	algorithm	must	be	evaluated	on	different	subsets	of	the	dataset	many	times.	This	means	we	need	additional	loops	within	our	evaluate	algorithm()	function.	Below	is	a	function	that	implements	algorithm	evaluation	with	cross-validation.	First,	the	dataset	is	split	into	n
folds	groups	called	folds.	Next,	we	loop	giving	each	fold	an	opportunity	to	be	held	out	of	training	and	used	to	evaluate	the	algorithm.	A	copy	of	the	list	of	folds	is	created	and	the	held	out	fold	is	removed	from	this	list.	Then	the	list	of	folds	is	flattened	into	one	long	list	of	rows	to	match	the	algorithms	expectation	of	a	training	dataset.	This	is	done	using
the	sum()	function.	Once	the	training	dataset	is	prepared	the	rest	of	the	function	within	this	loop	is	as	above.	A	copy	of	the	test	dataset	(the	fold)	is	made	and	the	output	values	are	cleared	to	avoid	accidental	cheating	by	algorithms.	The	algorithm	is	prepared	on	the	train	dataset	and	makes	predictions	on	the	test	dataset.	The	predictions	are	evaluated
and	stored	in	a	list.	Unlike	the	train-test	algorithm	test	harness,	a	list	of	scores	is	returned,	one	for	each	cross-validation	fold.	6.2.	Tutorial	45	#	Evaluate	an	algorithm	using	a	cross-validation	split	def	evaluate_algorithm(dataset,	algorithm,	n_folds,	*args):	folds	=	cross_validation_split(dataset,	n_folds)	scores	=	list()	for	fold	in	folds:	train_set	=
list(folds)	train_set.remove(fold)	train_set	=	sum(train_set,	[])	test_set	=	list()	for	row	in	fold:	row_copy	=	list(row)	test_set.append(row_copy)	row_copy[-1]	=	None	predicted	=	algorithm(train_set,	test_set,	*args)	actual	=	[row[-1]	for	row	in	fold]	accuracy	=	accuracy_metric(actual,	predicted)	scores.append(accuracy)	return	scores	Listing	6.4:
Function	To	Evaluate	An	Algorithm	Using	k-fold	Cross-Validation.	Although	slightly	more	complex	in	code	and	slower	to	run,	this	function	provides	a	more	robust	estimate	of	algorithm	performance.	We	can	tie	all	of	this	together	with	a	complete	example	on	the	diabetes	dataset	with	the	Zero	Rule	algorithm.	#	Example	of	a	Cross	Validation	Test
Harness	from	random	import	seed	from	random	import	randrange	from	csv	import	reader	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,
column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Split	a	dataset	into	k	folds	def	cross_validation_split(dataset,	n_folds):	dataset_split	=	list()	dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/	n_folds)	for	_	in	range(n_folds):	fold	=	list()	while	len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))	6.2.	Tutorial	46	dataset_split.append(fold)	return	dataset_split	#	Calculate	accuracy	percentage	def	accuracy_metric(actual,	predicted):	correct	=	0	for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/	float(len(actual))	*	100.0	#	Evaluate	an	algorithm	using	a	cross	validation	split
def	evaluate_algorithm(dataset,	algorithm,	n_folds,	*args):	folds	=	cross_validation_split(dataset,	n_folds)	scores	=	list()	for	fold	in	folds:	train_set	=	list(folds)	train_set.remove(fold)	train_set	=	sum(train_set,	[])	test_set	=	list()	for	row	in	fold:	row_copy	=	list(row)	test_set.append(row_copy)	row_copy[-1]	=	None	predicted	=	algorithm(train_set,
test_set,	*args)	actual	=	[row[-1]	for	row	in	fold]	accuracy	=	accuracy_metric(actual,	predicted)	scores.append(accuracy)	return	scores	#	zero	rule	algorithm	for	classification	def	zero_rule_algorithm_classification(train,	test):	output_values	=	[row[-1]	for	row	in	train]	prediction	=	max(set(output_values),	key=output_values.count)	predicted	=
[prediction	for	i	in	range(len(test))]	return	predicted	#	Test	cross	validation	test	harness	seed(1)	#	load	and	prepare	data	filename	=	'pima-indians-diabetes.csv'	dataset	=	load_csv(filename)	for	i	in	range(len(dataset[0])):	str_column_to_float(dataset,	i)	#	evaluate	algorithm	n_folds	=	5	scores	=	evaluate_algorithm(dataset,
zero_rule_algorithm_classification,	n_folds)	print('Scores:	%s'	%	scores)	print('Mean	Accuracy:	%.3f%%'	%	(sum(scores)/len(scores)))	Listing	6.5:	Example	of	the	k-fold	Cross-Validation	Algorithm	Test	Harness	on	the	Diabetes	Dataset.	A	total	of	5	cross-validation	folds	were	used	to	evaluate	the	Zero	Rule	Algorithm.	As	such,	5	scores	were	returned
from	the	evaluate	algorithm()	algorithm.	Running	this	example	both	prints	these	list	of	scores	calculated	and	prints	the	mean	score.	6.3.	Extensions	47	Scores:	[62.091503267973856,	64.70588235294117,	64.70588235294117,	64.70588235294117,	69.28104575163398]	Mean	Accuracy:	65.098%	Listing	6.6:	Example	Output	From	Using	the	Cross-
Validation	Test	Harness.	You	now	have	two	different	test	harnesses	that	you	can	use	to	evaluate	your	own	machine	learning	algorithms.	6.3	Extensions	This	section	lists	extensions	to	this	tutorial	that	you	may	wish	to	consider.	ˆ	Parameterized	Evaluation.	Pass	in	the	function	used	to	evaluate	predictions,	allowing	you	to	seamlessly	work	with
regression	problems.	ˆ	Parameterized	Resampling.	Pass	in	the	function	used	to	calculate	resampling	splits,	allowing	you	to	easily	switch	between	the	train-test	and	cross-validation	methods.	ˆ	Standard	Deviation	Scores.	Calculate	the	standard	deviation	to	get	an	idea	of	the	spread	of	scores	when	evaluating	algorithms	using	cross-validation.	6.4
Review	In	this	tutorial,	you	discovered	how	to	create	a	test	harness	from	scratch	to	evaluate	your	machine	learning	algorithms.	Specifically,	you	now	know:	ˆ	How	to	implement	and	use	a	train-test	algorithm	test	harness.	ˆ	How	to	implement	and	use	a	cross-validation	algorithm	test	harness.	6.4.1	Next	In	the	next	tutorial,	you	will	discover	how	to
implement	and	apply	the	simple	linear	regression	algorithm.	Chapter	7	Simple	Linear	Regression	Linear	regression	is	a	prediction	method	that	is	more	than	200	years	old.	Simple	linear	regression	is	a	great	first	machine	learning	algorithm	to	implement	as	it	requires	you	to	estimate	properties	from	your	training	dataset,	but	is	simple	enough	for
beginners	to	understand.	In	this	tutorial,	you	will	discover	how	to	implement	the	simple	linear	regression	algorithm	from	scratch	in	Python.	After	completing	this	tutorial	you	will	know:	ˆ	How	to	estimate	statistical	quantities	from	training	data.	ˆ	How	to	estimate	linear	regression	coefficients	from	data.	ˆ	How	to	make	predictions	using	linear
regression	for	new	data.	Let’s	get	started.	7.1	Description	This	section	is	divided	into	two	parts:	a	description	of	the	simple	linear	regression	technique	and	a	description	of	the	dataset	to	which	we	will	later	apply	it.	7.1.1	Simple	Linear	Regression	Linear	regression	assumes	a	linear	or	straight	line	relationship	between	the	input	variables	(X)	and	the
single	output	variable	(y).	More	specifically,	that	output	(y)	can	be	calculated	from	a	linear	combination	of	the	input	variables	(X).	When	there	is	a	single	input	variable,	the	method	is	referred	to	as	a	simple	linear	regression.	In	simple	linear	regression	we	can	use	statistics	on	the	training	data	to	estimate	the	coefficients	required	by	the	model	to	make
predictions	on	new	data.	The	line	for	a	simple	linear	regression	model	can	be	written	as:	y	=	b0	+	b1	×	x	(7.1)	Where	b0	and	b1	are	the	coefficients	we	must	estimate	from	the	training	data.	Once	the	coefficients	are	known,	we	can	use	this	equation	to	estimate	output	values	for	y	given	new	input	48	7.2.	Tutorial	49	examples	of	x.	It	requires	that	you
calculate	statistical	properties	from	the	data	such	as	mean,	variance	and	covariance.	All	the	algebra	has	been	taken	care	of	and	we	are	left	with	some	arithmetic	to	implement	to	estimate	the	simple	linear	regression	coefficients.	Briefly,	we	can	estimate	the	coefficients	as	follows:	Pn	((xi	−	mean(x))	×	(yi	−	mean(y)))	Pn	B1	=	i=1	2	(7.2)	i=1	(xi	−
mean(x))	B0	=	mean(y)	−	B1	×	mean(x)	Where	the	i	refers	to	the	value	of	the	ith	value	of	the	input	x	or	output	y.	Don’t	worry	if	this	is	not	clear	right	now,	these	are	the	functions	we	will	implement	in	the	tutorial.	7.1.2	Swedish	Auto	Insurance	Dataset	In	this	tutorial	we	will	use	the	Swedish	Auto	Insurance	Dataset.	This	dataset	involves	the	prediction
of	total	claim	payments.	The	baseline	RMSE	on	the	problem	is	approximately	72.251	thousand	Kronor.	You	can	learn	more	about	it	in	Appendix	A,	Section	A.2.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	insurance.csv.	Note:	you	may	need	to	convert	the	European	comma	(,)	to	the	decimal	dot	(.).	You	will
also	need	change	the	file	from	white-space-separated	variables	to	CSV	format.	7.2	Tutorial	This	tutorial	is	broken	down	into	five	parts:	1.	Calculate	Mean	and	Variance.	2.	Calculate	Covariance.	3.	Estimate	Coefficients.	4.	Make	Predictions.	5.	Swedish	Auto	Insurance	Case	Study.	These	steps	will	give	you	the	foundation	you	need	to	implement	and
train	simple	linear	regression	models	for	your	own	prediction	problems.	7.2.1	Calculate	Mean	and	Variance	The	first	step	is	to	estimate	the	mean	and	the	variance	of	both	the	input	and	output	variables	from	the	training	data.	The	mean	of	a	list	of	numbers	can	be	calculated	as:	P	i=1	xi	mean(x)	=	(7.3)	count(x)	Below	is	a	function	named	mean()	that
implements	this	behavior	for	a	list	of	numbers.	7.2.	Tutorial	50	#	Calculate	the	mean	value	of	a	list	of	numbers	def	mean(values):	return	sum(values)	/	float(len(values))	Listing	7.1:	Function	To	Calculate	the	Mean	of	a	List	of	Numbers.	The	variance	is	the	sum	squared	difference	for	each	value	from	the	mean	value.	Variance	for	a	list	of	numbers	can	be
calculated	as:	variance	=	n	X	(xi	−	mean(x))2	(7.4)	i=1	Below	is	a	function	named	variance()	that	calculates	the	variance	of	a	list	of	numbers.	It	requires	the	mean	of	the	list	to	be	provided	as	an	argument,	just	so	we	don’t	have	to	calculate	it	more	than	once.	#	Calculate	the	variance	of	a	list	of	numbers	def	variance(values,	mean):	return	sum([(x-
mean)**2	for	x	in	values])	Listing	7.2:	Function	To	Calculate	the	Variance	of	a	List	of	Numbers.	We	can	put	these	two	functions	together	and	test	them	on	a	small,	contrived	dataset.	Below	is	a	small	dataset	of	x	and	y	values.	x,	1,	2,	4,	3,	5,	y	1	3	3	2	5	Listing	7.3:	Small	Contrived	Dataset	For	Testing.	We	can	plot	this	dataset	on	a	scatter	plot	graph	as
follows:	Figure	7.1:	Plot	of	the	Small	Contrived	Dataset.	7.2.	Tutorial	51	We	can	calculate	the	mean	and	variance	for	both	the	x	and	y	values	in	the	example	below.	#	Example	of	Estimating	Mean	and	Variance	#	Calculate	the	mean	value	of	a	list	of	numbers	def	mean(values):	return	sum(values)	/	float(len(values))	#	Calculate	the	variance	of	a	list	of
numbers	def	variance(values,	mean):	return	sum([(x-mean)**2	for	x	in	values])	#	calculate	mean	and	variance	dataset	=	[[1,	1],	[2,	3],	[4,	3],	[3,	2],	[5,	5]]	x	=	[row[0]	for	row	in	dataset]	y	=	[row[1]	for	row	in	dataset]	mean_x,	mean_y	=	mean(x),	mean(y)	var_x,	var_y	=	variance(x,	mean_x),	variance(y,	mean_y)	print('x	stats:	mean=%.3f	variance=%.3f'
%	(mean_x,	var_x))	print('y	stats:	mean=%.3f	variance=%.3f'	%	(mean_y,	var_y))	Listing	7.4:	Example	to	Calculate	Mean	and	Variance	on	the	Contrived	Dataset.	Running	this	example	prints	out	the	mean	and	variance	for	both	columns.	x	stats:	mean=3.000	variance=10.000	y	stats:	mean=2.800	variance=8.800	Listing	7.5:	Example	Output	of	Mean
and	Variance	on	the	Contrived	Dataset.	This	is	our	first	step;	next	we	need	to	put	these	values	to	use	in	calculating	the	covariance.	7.2.2	Calculate	Covariance	The	covariance	of	two	groups	of	numbers	describes	how	those	numbers	change	together.	Covariance	is	a	generalization	of	correlation.	Correlation	describes	the	relationship	between	two
groups	of	numbers,	whereas	covariance	can	describe	the	relationship	between	two	or	more	groups	of	numbers.	Additionally,	covariance	can	be	normalized	to	produce	a	correlation	value.	Nevertheless,	we	can	calculate	the	covariance	between	two	variables	as	follows:	n	X	covariance	=	((xi	−	mean(x))	×	(yi	−	mean(y)))	(7.5)	i=1	Below	is	a	function
named	covariance()	that	implements	this	statistic.	It	builds	upon	the	previous	step	and	takes	the	lists	of	x	and	y	values	as	well	as	the	mean	of	these	values	as	arguments.	#	Calculate	covariance	between	x	and	y	def	covariance(x,	mean_x,	y,	mean_y):	covar	=	0.0	for	i	in	range(len(x)):	covar	+=	(x[i]	-	mean_x)	*	(y[i]	-	mean_y)	return	covar	Listing	7.6:
Function	To	Calculate	the	Covariance.	7.2.	Tutorial	52	We	can	test	the	calculation	of	the	covariance	on	the	same	small	contrived	dataset	as	in	the	previous	section.	Putting	it	all	together	we	get	the	example	below.	#	Example	of	Calculating	Covariance	#	Calculate	the	mean	value	of	a	list	of	numbers	def	mean(values):	return	sum(values)	/
float(len(values))	#	Calculate	covariance	between	x	and	y	def	covariance(x,	mean_x,	y,	mean_y):	covar	=	0.0	for	i	in	range(len(x)):	covar	+=	(x[i]	-	mean_x)	*	(y[i]	-	mean_y)	return	covar	#	calculate	covariance	dataset	=	[[1,	1],	[2,	3],	[4,	3],	[3,	2],	[5,	5]]	x	=	[row[0]	for	row	in	dataset]	y	=	[row[1]	for	row	in	dataset]	mean_x,	mean_y	=	mean(x),	mean(y)
covar	=	covariance(x,	mean_x,	y,	mean_y)	print('Covariance:	%.3f'	%	(covar))	Listing	7.7:	Example	to	Calculate	Covariance	on	the	Contrived	Dataset.	Running	this	example	prints	the	covariance	for	the	x	and	y	variables.	Covariance:	8.000	Listing	7.8:	Example	Output	of	Calculating	Covariance	on	the	Contrived	Dataset.	We	now	have	all	the	pieces	in
place	to	calculate	the	coefficients	for	our	model.	7.2.3	Estimate	Coefficients	We	must	estimate	the	values	for	two	coefficients	in	simple	linear	regression.	The	first	is	B1	which	can	be	estimated	as:	Pn	(xi	−	mean(x)	×	(yi	−	mean(y))	B1	=	i=1	Pn	(7.6)	2	i=1	(xi	−	mean(x))	We	have	learned	some	things	above	and	can	simplify	this	arithmetic	to:
covariance(x,	y)	(7.7)	variance(x)	We	already	have	functions	to	calculate	covariance()	and	variance().	Next,	we	need	to	estimate	a	value	for	B0,	also	called	the	intercept	as	it	controls	the	starting	point	of	the	line	where	it	intersects	the	y-axis.	B1	=	B0	=	mean(y)	−	B1	×	mean(x)	(7.8)	Again,	we	know	how	to	estimate	B1	and	we	have	a	function	to
estimate	mean().	We	can	put	all	of	this	together	into	a	function	named	coefficients()	that	takes	the	dataset	as	an	argument	and	returns	the	coefficients.	7.2.	Tutorial	53	#	Calculate	coefficients	def	coefficients(dataset):	x	=	[row[0]	for	row	in	dataset]	y	=	[row[1]	for	row	in	dataset]	x_mean,	y_mean	=	mean(x),	mean(y)	b1	=	covariance(x,	x_mean,	y,
y_mean)	/	variance(x,	x_mean)	b0	=	y_mean	-	b1	*	x_mean	return	[b0,	b1]	Listing	7.9:	Function	To	Calculate	the	Coefficients.	We	can	put	this	together	with	all	of	the	functions	from	the	previous	two	steps	and	test	out	the	calculation	of	coefficients.	#	Example	of	Calculating	Coefficients	#	Calculate	the	mean	value	of	a	list	of	numbers	def	mean(values):
return	sum(values)	/	float(len(values))	#	Calculate	covariance	between	x	and	y	def	covariance(x,	mean_x,	y,	mean_y):	covar	=	0.0	for	i	in	range(len(x)):	covar	+=	(x[i]	-	mean_x)	*	(y[i]	-	mean_y)	return	covar	#	Calculate	the	variance	of	a	list	of	numbers	def	variance(values,	mean):	return	sum([(x-mean)**2	for	x	in	values])	#	Calculate	coefficients	def
coefficients(dataset):	x	=	[row[0]	for	row	in	dataset]	y	=	[row[1]	for	row	in	dataset]	x_mean,	y_mean	=	mean(x),	mean(y)	b1	=	covariance(x,	x_mean,	y,	y_mean)	/	variance(x,	x_mean)	b0	=	y_mean	-	b1	*	x_mean	return	[b0,	b1]	#	calculate	coefficients	dataset	=	[[1,	1],	[2,	3],	[4,	3],	[3,	2],	[5,	5]]	b0,	b1	=	coefficients(dataset)	print('Coefficients:	B0=%.3f,
B1=%.3f'	%	(b0,	b1))	Listing	7.10:	Example	to	Calculate	Coefficients	on	the	Contrived	Dataset.	Running	this	example	calculates	and	prints	the	coefficients.	Coefficients:	B0=0.400,	B1=0.800	Listing	7.11:	Example	Output	of	Calculating	Coefficients	on	the	Contrived	Dataset.	Now	that	we	know	how	to	estimate	the	coefficients,	the	next	step	is	to	use
them.	7.2.	Tutorial	7.2.4	54	Make	Predictions	The	simple	linear	regression	model	is	a	line	defined	by	coefficients	estimated	from	training	data.	Once	the	coefficients	are	estimated,	we	can	use	them	to	make	predictions.	The	equation	to	make	predictions	with	a	simple	linear	regression	model	is	as	follows:	y	=	b0	+	b1	×	x	(7.9)	Below	is	a	function	named
simple	linear	regression()	that	implements	the	prediction	equation	to	make	predictions	on	a	test	dataset.	It	also	ties	together	the	estimation	of	the	coefficients	on	training	data	from	the	steps	above.	The	coefficients	prepared	from	the	training	data	are	used	to	make	predictions	on	the	test	data,	which	are	then	returned.	def
simple_linear_regression(train,	test):	predictions	=	list()	b0,	b1	=	coefficients(train)	for	row	in	test:	yhat	=	b0	+	b1	*	row[0]	predictions.append(yhat)	return	predictions	Listing	7.12:	Function	To	Run	Simple	Linear	Regression.	Let’s	pull	together	everything	we	have	learned	and	make	predictions	for	our	simple	contrived	dataset.	As	part	of	this	example,
we	will	also	add	in	a	function	to	manage	the	evaluation	of	the	predictions	called	evaluate	algorithm()	and	another	function	to	estimate	the	Root	Mean	Squared	Error	of	the	predictions	called	rmse	metric().	The	full	example	is	listed	below.	#	Example	of	Standalone	Simple	Linear	Regression	from	math	import	sqrt	#	Calculate	root	mean	squared	error
def	rmse_metric(actual,	predicted):	sum_error	=	0.0	for	i	in	range(len(actual)):	prediction_error	=	predicted[i]	-	actual[i]	sum_error	+=	(prediction_error	**	2)	mean_error	=	sum_error	/	float(len(actual))	return	sqrt(mean_error)	#	Evaluate	regression	algorithm	on	training	dataset	def	evaluate_algorithm(dataset,	algorithm):	test_set	=	list()	for	row	in
dataset:	row_copy	=	list(row)	row_copy[-1]	=	None	test_set.append(row_copy)	predicted	=	algorithm(dataset,	test_set)	print(predicted)	actual	=	[row[-1]	for	row	in	dataset]	rmse	=	rmse_metric(actual,	predicted)	return	rmse	#	Calculate	the	mean	value	of	a	list	of	numbers	def	mean(values):	return	sum(values)	/	float(len(values))	7.2.	Tutorial	55	#
Calculate	covariance	between	x	and	y	def	covariance(x,	mean_x,	y,	mean_y):	covar	=	0.0	for	i	in	range(len(x)):	covar	+=	(x[i]	-	mean_x)	*	(y[i]	-	mean_y)	return	covar	#	Calculate	the	variance	of	a	list	of	numbers	def	variance(values,	mean):	return	sum([(x-mean)**2	for	x	in	values])	#	Calculate	coefficients	def	coefficients(dataset):	x	=	[row[0]	for	row	in
dataset]	y	=	[row[1]	for	row	in	dataset]	x_mean,	y_mean	=	mean(x),	mean(y)	b1	=	covariance(x,	x_mean,	y,	y_mean)	/	variance(x,	x_mean)	b0	=	y_mean	-	b1	*	x_mean	return	[b0,	b1]	#	Simple	linear	regression	algorithm	def	simple_linear_regression(train,	test):	predictions	=	list()	b0,	b1	=	coefficients(train)	for	row	in	test:	yhat	=	b0	+	b1	*	row[0]
predictions.append(yhat)	return	predictions	#	Test	simple	linear	regression	dataset	=	[[1,	1],	[2,	3],	[4,	3],	[3,	2],	[5,	5]]	rmse	=	evaluate_algorithm(dataset,	simple_linear_regression)	print('RMSE:	%.3f'	%	(rmse))	Listing	7.13:	Example	of	Simple	Linear	Regression	on	the	Contrived	Dataset.	Running	this	example	displays	the	following	output	that	first
lists	the	predictions	and	the	RMSE	of	these	predictions.	[1.1999999999999995,	1.9999999999999996,	3.5999999999999996,	2.8,	4.3999999999999995]	RMSE:	0.693	Listing	7.14:	Example	Output	Simple	Linear	Regression	on	the	Contrived	Dataset.	Finally,	we	can	plot	the	predictions	as	a	line	and	compare	it	to	the	original	dataset.	7.2.	Tutorial	56
Figure	7.2:	Plot	of	the	Simple	Linear	Regression	Predictions	on	the	Contrived	Dataset.	7.2.5	Swedish	Auto	Insurance	Case	Study	We	now	know	how	to	implement	a	simple	linear	regression	model.	Let’s	apply	it	to	the	Swedish	insurance	dataset.	This	section	assumes	that	you	have	downloaded	the	dataset	to	the	file	insurance.csv	and	it	is	available	in
the	current	working	directory.	We	will	add	some	convenience	functions	to	the	simple	linear	regression	from	the	previous	steps.	Specifically	a	function	to	load	the	CSV	file	called	load	csv(),	a	function	to	convert	a	loaded	dataset	to	numbers	called	str	column	to	float(),	a	function	to	evaluate	an	algorithm	using	a	train	and	test	set	called	train	test	split()	a
function	to	calculate	RMSE	called	rmse	metric()	and	a	function	to	evaluate	an	algorithm	called	evaluate	algorithm().	The	complete	example	is	listed	below.	A	training	dataset	of	60%	of	the	data	is	used	to	prepare	the	model	and	predictions	are	made	on	the	remaining	40%.	#	Example	of	Simple	Linear	Regression	on	the	Swedish	Insurance	Dataset	from
random	import	seed	from	random	import	randrange	from	csv	import	reader	from	math	import	sqrt	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def
str_column_to_float(dataset,	column):	7.2.	Tutorial	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Split	a	dataset	into	a	train	and	test	set	def	train_test_split(dataset,	split):	train	=	list()	train_size	=	split	*	len(dataset)	dataset_copy	=	list(dataset)	while	len(train)	<	train_size:	index	=	randrange(len(dataset_copy))
train.append(dataset_copy.pop(index))	return	train,	dataset_copy	#	Calculate	root	mean	squared	error	def	rmse_metric(actual,	predicted):	sum_error	=	0.0	for	i	in	range(len(actual)):	prediction_error	=	predicted[i]	-	actual[i]	sum_error	+=	(prediction_error	**	2)	mean_error	=	sum_error	/	float(len(actual))	return	sqrt(mean_error)	#	Evaluate	an
algorithm	using	a	train/test	split	def	evaluate_algorithm(dataset,	algorithm,	split,	*args):	train,	test	=	train_test_split(dataset,	split)	test_set	=	list()	for	row	in	test:	row_copy	=	list(row)	row_copy[-1]	=	None	test_set.append(row_copy)	predicted	=	algorithm(train,	test_set,	*args)	actual	=	[row[-1]	for	row	in	test]	rmse	=	rmse_metric(actual,	predicted)
return	rmse	#	Calculate	the	mean	value	of	a	list	of	numbers	def	mean(values):	return	sum(values)	/	float(len(values))	#	Calculate	covariance	between	x	and	y	def	covariance(x,	mean_x,	y,	mean_y):	covar	=	0.0	for	i	in	range(len(x)):	covar	+=	(x[i]	-	mean_x)	*	(y[i]	-	mean_y)	return	covar	#	Calculate	the	variance	of	a	list	of	numbers	def	variance(values,
mean):	return	sum([(x-mean)**2	for	x	in	values])	#	Calculate	coefficients	def	coefficients(dataset):	x	=	[row[0]	for	row	in	dataset]	y	=	[row[1]	for	row	in	dataset]	x_mean,	y_mean	=	mean(x),	mean(y)	b1	=	covariance(x,	x_mean,	y,	y_mean)	/	variance(x,	x_mean)	57	7.3.	Extensions	58	b0	=	y_mean	-	b1	*	x_mean	return	[b0,	b1]	#	Simple	linear	regression
algorithm	def	simple_linear_regression(train,	test):	predictions	=	list()	b0,	b1	=	coefficients(train)	for	row	in	test:	yhat	=	b0	+	b1	*	row[0]	predictions.append(yhat)	return	predictions	#	Simple	linear	regression	on	insurance	dataset	seed(1)	#	load	and	prepare	data	filename	=	'insurance.csv'	dataset	=	load_csv(filename)	for	i	in	range(len(dataset[0])):
str_column_to_float(dataset,	i)	#	evaluate	algorithm	split	=	0.6	rmse	=	evaluate_algorithm(dataset,	simple_linear_regression,	split)	print('RMSE:	%.3f'	%	(rmse))	Listing	7.15:	Example	of	Simple	Linear	Regression	on	the	Insurance	Dataset.	Running	the	algorithm	prints	the	RMSE	for	the	trained	model	on	the	training	dataset.	A	score	of	about	33
(thousands	of	Kronor)	was	achieved,	which	is	much	better	than	the	baseline	performance	of	72	(thousands	of	Kronor)	on	the	same	problem.	RMSE:	33.630	Listing	7.16:	Example	Output	Simple	Linear	Regression	on	the	Insurance	Dataset.	7.3	Extensions	The	best	extension	to	this	tutorial	is	to	try	out	the	algorithm	on	more	problems.	Small	datasets
with	just	an	input	(x)	and	output	(y)	columns	are	popular	for	demonstration	in	statistical	books	and	courses.	Many	of	these	datasets	are	available	online.	Seek	out	some	more	small	datasets	and	make	predictions	using	simple	linear	regression.	7.4	Review	In	this	tutorial,	you	discovered	how	to	implement	the	simple	linear	regression	algorithm	from
scratch	in	Python.	Specifically,	you	learned:	ˆ	How	to	estimate	statistics	from	a	training	dataset	like	mean,	variance	and	covariance.	ˆ	How	to	estimate	model	coefficients	and	use	them	to	make	predictions.	ˆ	How	to	use	simple	linear	regression	to	make	predictions	on	a	real	dataset.	7.4.	Review	7.4.1	59	Further	Reading	ˆ	Section	3.1	Simple	Linear
Regression,	page	61,	An	Introduction	to	Statistical	Learning,	2014.	ˆ	Section	18.6.	Regression	and	Classification	with	Linear	Models,	page	717,	Artificial	Intelligence:	A	Modern	Approach,	2010.	7.4.2	Next	In	the	next	tutorial,	you	will	discover	how	to	implement	and	apply	the	multivariate	linear	regression	algorithm.	Chapter	8	Multivariate	Linear
Regression	The	core	of	many	machine	learning	algorithms	is	optimization.	Optimization	algorithms	are	used	by	machine	learning	algorithms	to	find	a	good	set	of	model	parameters	given	a	training	dataset.	The	most	common	optimization	algorithm	used	in	machine	learning	is	stochastic	gradient	descent.	In	this	tutorial,	you	will	discover	how	to
implement	stochastic	gradient	descent	to	optimize	a	linear	regression	algorithm	from	scratch	with	Python.	After	completing	this	tutorial,	you	will	know:	ˆ	How	to	estimate	linear	regression	coefficients	using	stochastic	gradient	descent.	ˆ	How	to	make	predictions	for	multivariate	linear	regression.	ˆ	How	to	implement	linear	regression	with	stochastic
gradient	descent	to	make	predictions	on	new	data.	Let’s	get	started.	8.1	Description	In	this	section,	we	will	describe	linear	regression,	the	stochastic	gradient	descent	technique	and	the	Wine	Quality	dataset	used	in	this	tutorial.	8.1.1	Multivariate	Linear	Regression	Linear	regression	is	a	technique	for	predicting	a	real	value.	Confusingly,	these
problems	where	a	real	value	is	to	be	predicted	are	called	regression	problems.	Linear	regression	is	a	technique	where	a	straight	line	is	used	to	model	the	relationship	between	input	and	output	values.	In	more	than	two	dimensions,	this	straight	line	may	be	thought	of	as	a	plane	or	hyperplane.	Predictions	are	made	as	a	combination	of	the	input	values
to	predict	the	output	value.	Each	input	attribute	(x)	is	weighted	using	a	coefficient	(b),	and	the	goal	of	the	learning	algorithm	is	to	discover	a	set	of	coefficients	that	results	in	good	predictions	(y).	y	=	b0	+	b1	×	x1	+	b2	×	x2	+	...	Coefficients	can	be	found	using	stochastic	gradient	descent.	60	(8.1)	8.2.	Tutorial	8.1.2	61	Stochastic	Gradient	Descent
Gradient	Descent	is	the	process	of	minimizing	a	function	following	the	slope	or	gradient	of	that	function.	In	machine	learning,	we	can	use	a	technique	that	evaluates	and	updates	the	coefficients	every	iteration	called	stochastic	gradient	descent	to	minimize	the	error	of	a	model	on	our	training	data.	The	way	this	optimization	algorithm	works	is	that
each	training	instance	is	shown	to	the	model	one	at	a	time.	The	model	makes	a	prediction	for	a	training	instance,	the	error	is	calculated	and	the	model	is	updated	in	order	to	reduce	the	error	for	the	next	prediction.	This	process	is	repeated	for	a	fixed	number	of	iterations.	This	procedure	can	be	used	to	find	the	set	of	coefficients	in	a	model	that	result
in	the	smallest	error	for	the	model	on	the	training	data.	Each	iteration,	the	coefficients	(b)	in	machine	learning	language	are	updated	using	the	equation:	b	=	b	−	learning	rate	×	error	×	x	(8.2)	Where	b	is	the	coefficient	or	weight	being	optimized,	learning	rate	is	a	learning	rate	that	you	must	configure	(e.g.	0.01),	error	is	the	prediction	error	for	the
model	on	the	training	data	attributed	to	the	weight,	and	x	is	the	input	value.	8.1.3	Wine	Quality	Dataset	In	this	tutorial	we	will	use	the	Wine	Quality	Dataset.	This	dataset	involves	the	prediction	of	white	Wine	Quality.	The	baseline	RMSE	on	the	problem	is	approximately	0.148	quality	points.	You	can	learn	more	about	it	in	Appendix	A,	Section	A.3.
Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	winequality-white.csv.	You	must	remove	the	header	information	from	the	file	and	convert	the	semicolon	character	(;)	separator	to	the	comma	character	(,)	to	meet	CSV	format.	8.2	Tutorial	This	tutorial	is	broken	down	into	3	parts:	1.	Making	Predictions.	2.
Estimating	Coefficients.	3.	Wine	Quality	Case	Study.	This	will	provide	the	foundation	you	need	to	implement	and	apply	linear	regression	with	stochastic	gradient	descent	on	your	own	predictive	modeling	problems.	8.2.1	Making	Predictions	The	first	step	is	to	develop	a	function	that	can	make	predictions.	This	will	be	needed	both	in	the	evaluation	of
candidate	coefficient	values	in	stochastic	gradient	descent	and	after	the	model	is	finalized	and	we	wish	to	start	making	predictions	on	test	data	or	new	data.	Below	is	a	function	named	predict()	that	predicts	an	output	value	for	a	row	given	a	set	of	coefficients.	8.2.	Tutorial	62	The	first	coefficient	in	is	always	the	intercept,	also	called	the	bias	or	b0	as	it
is	standalone	and	not	responsible	for	a	specific	input	value.	#	Make	a	prediction	with	coefficients	def	predict(row,	coefficients):	yhat	=	coefficients[0]	for	i	in	range(len(row)-1):	yhat	+=	coefficients[i	+	1]	*	row[i]	return	yhat	Listing	8.1:	Function	To	Make	Predictions	with	Coefficients.	We	can	contrive	a	small	dataset	to	test	our	prediction	function.	x,	1,
2,	4,	3,	5,	y	1	3	3	2	5	Listing	8.2:	Small	Contrived	Dataset	for	Testing.	Below	is	a	plot	of	this	dataset.	Figure	8.1:	Plot	of	the	Small	Contrived	Dataset.	We	can	also	use	previously	prepared	coefficients	to	make	predictions	for	this	dataset.	Putting	this	all	together	we	can	test	our	predict()	function	below.	#	Example	of	making	a	prediction	with	coefficients
#	Make	a	prediction	def	predict(row,	coefficients):	yhat	=	coefficients[0]	for	i	in	range(len(row)-1):	yhat	+=	coefficients[i	+	1]	*	row[i]	8.2.	Tutorial	63	return	yhat	dataset	=	[[1,	1],	[2,	3],	[4,	3],	[3,	2],	[5,	5]]	coef	=	[0.4,	0.8]	for	row	in	dataset:	yhat	=	predict(row,	coef)	print("Expected=%.3f,	Predicted=%.3f"	%	(row[-1],	yhat))	Listing	8.3:	Example	of
Making	Predictions	on	the	Contrived	Dataset.	There	is	a	single	input	value	(x)	and	two	coefficient	values	(b0	and	b1).	The	prediction	equation	we	have	modeled	for	this	problem	is:	y	=	b0	+	b1	×	x	(8.3)	Or,	with	the	specific	coefficient	values	we	chose	by	hand	as:	y	=	0.4	+	0.8	×	x	(8.4)	Running	this	function	we	get	predictions	that	are	reasonably	close
to	the	expected	output	(y)	values.	Expected=1.000,	Expected=3.000,	Expected=3.000,	Expected=2.000,	Expected=5.000,	Predicted=1.200	Predicted=2.000	Predicted=3.600	Predicted=2.800	Predicted=4.400	Listing	8.4:	Example	Output	of	Predictions	on	Contrived	Dataset.	Now	we	are	ready	to	implement	stochastic	gradient	descent	to	optimize	our
coefficient	values.	8.2.2	Estimating	Coefficients	We	can	estimate	the	coefficient	values	for	our	training	data	using	stochastic	gradient	descent.	Stochastic	gradient	descent	requires	two	parameters:	ˆ	Learning	Rate:	Used	to	limit	the	amount	that	each	coefficient	is	corrected	each	time	it	is	updated.	ˆ	Epochs:	The	number	of	times	to	run	through	the
training	data	while	updating	the	coefficients.	These,	along	with	the	training	data	will	be	the	arguments	to	the	function.	There	are	3	loops	we	need	to	perform	in	the	function:	1.	Loop	over	each	epoch.	2.	Loop	over	each	row	in	the	training	data	for	an	epoch.	3.	Loop	over	each	coefficient	and	update	it	for	a	row	in	an	epoch.	8.2.	Tutorial	64	As	you	can
see,	we	update	each	coefficient	for	each	row	in	the	training	data,	each	epoch.	Coefficients	are	updated	based	on	the	error	the	model	made.	The	error	is	calculated	as	the	difference	between	the	prediction	made	with	the	candidate	coefficients	and	the	expected	output	value.	error	=	prediction	−	expected	(8.5)	There	is	one	coefficient	to	weight	each
input	attribute,	and	these	are	updated	in	a	consistent	way,	for	example:	b1(t	+	1)	=	b1(t)	−	learning	rate	×	error(t)	×	x1(t)	(8.6)	The	special	coefficient	at	the	beginning	of	the	list,	also	called	the	intercept	or	the	bias,	is	updated	in	a	similar	way,	except	without	an	input	as	it	is	not	associated	with	a	specific	input	value:	b0(t	+	1)	=	b0(t)	−	learning	rate
×	error(t)	(8.7)	Now	we	can	put	all	of	this	together.	Below	is	a	function	named	coefficients	sgd()	that	calculates	coefficient	values	for	a	training	dataset	using	stochastic	gradient	descent.	#	Estimate	linear	regression	coefficients	using	stochastic	gradient	descent	def	coefficients_sgd(train,	l_rate,	n_epoch):	coef	=	[0.0	for	i	in	range(len(train[0]))]	for
epoch	in	range(n_epoch):	sum_error	=	0	for	row	in	train:	yhat	=	predict(row,	coef)	error	=	yhat	-	row[-1]	sum_error	+=	error**2	coef[0]	=	coef[0]	-	l_rate	*	error	for	i	in	range(len(row)-1):	coef[i	+	1]	=	coef[i	+	1]	-	l_rate	*	error	*	row[i]	print('>epoch=%d,	lrate=%.3f,	error=%.3f'	%	(epoch,	l_rate,	sum_error))	return	coef	Listing	8.5:	Function	To
Estimate	Coefficients	With	Stochastic	Gradient	Descent.	You	can	see	that	in	addition	we	keep	track	of	the	sum	of	the	squared	error	(a	positive	value)	each	epoch	so	that	we	can	print	out	a	nice	message	in	the	outer	loop.	We	can	test	this	function	on	the	same	small	contrived	dataset	from	above.	#	Example	of	estimating	coefficients	#	Make	a	prediction
def	predict(row,	coefficients):	yhat	=	coefficients[0]	for	i	in	range(len(row)-1):	yhat	+=	coefficients[i	+	1]	*	row[i]	return	yhat	#	Estimate	linear	regression	coefficients	using	stochastic	gradient	descent	def	coefficients_sgd(train,	l_rate,	n_epoch):	coef	=	[0.0	for	i	in	range(len(train[0]))]	for	epoch	in	range(n_epoch):	8.2.	Tutorial	65	sum_error	=	0	for	row
in	train:	yhat	=	predict(row,	coef)	error	=	yhat	-	row[-1]	sum_error	+=	error**2	coef[0]	=	coef[0]	-	l_rate	*	error	for	i	in	range(len(row)-1):	coef[i	+	1]	=	coef[i	+	1]	-	l_rate	*	error	*	row[i]	print('>epoch=%d,	lrate=%.3f,	error=%.3f'	%	(epoch,	l_rate,	sum_error))	return	coef	#	Calculate	coefficients	dataset	=	[[1,	1],	[2,	3],	[4,	3],	[3,	2],	[5,	5]]	l_rate	=
0.001	n_epoch	=	50	coef	=	coefficients_sgd(dataset,	l_rate,	n_epoch)	print(coef)	Listing	8.6:	Example	of	Estimating	Coefficients	on	the	Contrived	Dataset.	We	use	a	small	learning	rate	of	0.001	and	train	the	model	for	50	epochs,	or	50	exposures	of	the	coefficients	to	the	entire	training	dataset.	Running	the	example	prints	a	message	each	epoch	with	the
sum	squared	error	for	that	epoch	and	the	final	set	of	coefficients.	...	>epoch=45,	lrate=0.001,	error=2.650	>epoch=46,	lrate=0.001,	error=2.627	>epoch=47,	lrate=0.001,	error=2.607	>epoch=48,	lrate=0.001,	error=2.589	>epoch=49,	lrate=0.001,	error=2.573	[0.22998234937311363,	0.8017220304137576]	Listing	8.7:	Example	Output	of
Estimating	Coefficients	on	the	Contrived	Dataset.	You	can	see	how	error	continues	to	drop	even	in	the	final	epoch.	We	could	probably	train	for	a	lot	longer	(more	epochs)	or	increase	the	amount	we	update	the	coefficients	each	epoch	(higher	learning	rate).	Experiment	and	see	what	you	come	up	with.	Now,	let’s	apply	this	algorithm	on	a	real	dataset.
8.2.3	Wine	Quality	Case	Study	In	this	section,	we	will	train	a	linear	regression	model	using	stochastic	gradient	descent	on	the	Wine	Quality	dataset.	The	example	assumes	that	a	CSV	copy	of	the	dataset	is	in	the	current	working	directory	with	the	filename	winequality-white.csv.	The	dataset	is	first	loaded,	the	string	values	converted	to	numeric	and
each	column	is	normalized	to	values	in	the	range	of	0	to	1.	This	is	achieved	with	helper	functions	load	csv()	and	str	column	to	float()	to	load	and	prepare	the	dataset	and	dataset	minmax()	and	normalize	dataset()	to	normalize	it.	We	will	use	k-fold	cross-validation	to	estimate	the	performance	of	the	learned	model	on	unseen	data.	This	means	that	we	will
construct	and	evaluate	k	models	and	estimate	the	performance	as	the	mean	model	error.	Root	mean	squared	error	will	be	used	to	evaluate	each	model.	These	behaviors	are	provided	in	the	cross	validation	split(),	rmse	metric()	and	evaluate	algorithm()	helper	functions.	8.2.	Tutorial	66	We	will	use	the	predict(),	coefficients	sgd()	and	linear	regression
sgd()	functions	created	above	to	train	the	model.	Below	is	the	complete	example.	#	Linear	Regression	With	Stochastic	Gradient	Descent	for	Wine	Quality	from	random	import	seed	from	random	import	randrange	from	csv	import	reader	from	math	import	sqrt	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:
csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Find	the	min	and	max	values	for	each	column	def	dataset_minmax(dataset):	minmax	=	list()	for	i	in
range(len(dataset[0])):	col_values	=	[row[i]	for	row	in	dataset]	value_min	=	min(col_values)	value_max	=	max(col_values)	minmax.append([value_min,	value_max])	return	minmax	#	Rescale	dataset	columns	to	the	range	0-1	def	normalize_dataset(dataset,	minmax):	for	row	in	dataset:	for	i	in	range(len(row)):	row[i]	=	(row[i]	-	minmax[i][0])	/	(minmax[i]
[1]	-	minmax[i][0])	#	Split	a	dataset	into	k	folds	def	cross_validation_split(dataset,	n_folds):	dataset_split	=	list()	dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/	n_folds)	for	_	in	range(n_folds):	fold	=	list()	while	len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))	fold.append(dataset_copy.pop(index))	dataset_split.append(fold)	return
dataset_split	#	Calculate	root	mean	squared	error	def	rmse_metric(actual,	predicted):	8.2.	Tutorial	sum_error	=	0.0	for	i	in	range(len(actual)):	prediction_error	=	predicted[i]	-	actual[i]	sum_error	+=	(prediction_error	**	2)	mean_error	=	sum_error	/	float(len(actual))	return	sqrt(mean_error)	#	Evaluate	an	algorithm	using	a	cross	validation	split	def
evaluate_algorithm(dataset,	algorithm,	n_folds,	*args):	folds	=	cross_validation_split(dataset,	n_folds)	scores	=	list()	for	fold	in	folds:	train_set	=	list(folds)	train_set.remove(fold)	train_set	=	sum(train_set,	[])	test_set	=	list()	for	row	in	fold:	row_copy	=	list(row)	test_set.append(row_copy)	row_copy[-1]	=	None	predicted	=	algorithm(train_set,	test_set,
*args)	actual	=	[row[-1]	for	row	in	fold]	rmse	=	rmse_metric(actual,	predicted)	scores.append(rmse)	return	scores	#	Make	a	prediction	with	coefficients	def	predict(row,	coefficients):	yhat	=	coefficients[0]	for	i	in	range(len(row)-1):	yhat	+=	coefficients[i	+	1]	*	row[i]	return	yhat	#	Estimate	linear	regression	coefficients	using	stochastic	gradient
descent	def	coefficients_sgd(train,	l_rate,	n_epoch):	coef	=	[0.0	for	i	in	range(len(train[0]))]	for	_	in	range(n_epoch):	for	row	in	train:	yhat	=	predict(row,	coef)	error	=	yhat	-	row[-1]	coef[0]	=	coef[0]	-	l_rate	*	error	for	i	in	range(len(row)-1):	coef[i	+	1]	=	coef[i	+	1]	-	l_rate	*	error	*	row[i]	#	print(l_rate,	n_epoch,	error)	return	coef	#	Linear	Regression
Algorithm	With	Stochastic	Gradient	Descent	def	linear_regression_sgd(train,	test,	l_rate,	n_epoch):	predictions	=	list()	coef	=	coefficients_sgd(train,	l_rate,	n_epoch)	for	row	in	test:	yhat	=	predict(row,	coef)	predictions.append(yhat)	return(predictions)	#	Linear	Regression	on	wine	quality	dataset	67	8.3.	Extensions	68	seed(1)	#	load	and	prepare	data
filename	=	'winequality-white.csv'	dataset	=	load_csv(filename)	for	i	in	range(len(dataset[0])):	str_column_to_float(dataset,	i)	#	normalize	minmax	=	dataset_minmax(dataset)	normalize_dataset(dataset,	minmax)	#	evaluate	algorithm	n_folds	=	5	l_rate	=	0.01	n_epoch	=	50	scores	=	evaluate_algorithm(dataset,	linear_regression_sgd,	n_folds,	l_rate,
n_epoch)	print('Scores:	%s'	%	scores)	print('Mean	RMSE:	%.3f'	%	(sum(scores)/float(len(scores))))	Listing	8.8:	Example	of	Multivariate	Linear	Regression	on	the	Wine	Quality	Dataset.	A	k	value	of	5	was	used	for	cross-validation,	giving	each	fold	4,898	=	979.6	or	just	under	1000	5	records	to	be	evaluated	upon	each	iteration.	A	learning	rate	of	0.01	and
50	training	epochs	were	chosen	with	a	little	experimentation.	You	can	try	your	own	configurations	and	see	if	you	can	beat	my	score.	Running	this	example	prints	the	scores	for	each	of	the	5	cross-validation	folds	then	prints	the	mean	RMSE.	We	can	see	that	the	RMSE	(on	the	normalized	dataset)	is	0.126,	lower	than	the	baseline	value	of	0.148.	Scores:
[0.12248058224159092,	0.13034017509167112,	0.12620370547483578,	0.12897687952843237,	0.12446990678682233]	Mean	RMSE:	0.126	Listing	8.9:	Example	Output	of	Linear	Regression	on	the	Wine	Quality	Dataset.	8.3	Extensions	This	section	lists	a	number	of	extensions	to	this	tutorial	that	you	may	wish	to	consider	exploring.	ˆ	Tune	The
Example.	Tune	the	learning	rate,	number	of	epochs	and	even	the	data	preparation	method	to	get	an	improved	score	on	the	Wine	Quality	dataset.	ˆ	Batch	Stochastic	Gradient	Descent.	Change	the	stochastic	gradient	descent	algorithm	to	accumulate	updates	across	each	epoch	and	only	update	the	coefficients	in	a	batch	at	the	end	of	the	epoch.	ˆ
Additional	Regression	Problems.	Apply	the	technique	to	other	regression	problems	on	the	UCI	machine	learning	repository.	8.4	Review	In	this	tutorial,	you	discovered	how	to	implement	linear	regression	using	stochastic	gradient	descent	from	scratch	with	Python.	Specifically,	you	learned:	8.4.	Review	69	ˆ	How	to	make	predictions	for	a	multivariate
linear	regression	problem.	ˆ	How	to	optimize	a	set	of	coefficients	using	stochastic	gradient	descent.	ˆ	How	to	apply	the	technique	to	a	real	regression	predictive	modeling	problem.	8.4.1	Further	Reading	ˆ	Section	3.2	Multiple	Linear	Regression,	page	71,	An	Introduction	to	Statistical	Learning,	2014.	ˆ	Section	18.6.	Regression	and	Classification	with
Linear	Models,	page	717,	Artificial	Intelligence:	A	Modern	Approach,	2010.	ˆ	Section	6.2	Linear	Regression,	page	105,	Applied	Predictive	Modeling,	2013	ˆ	Section	4.6,	Linear	Models,	page	119,	Data	Mining:	Practical	Machine	Learning	Tools	and	Techniques,	second	edition,	2005.	8.4.2	Next	In	the	next	tutorial,	you	will	discover	how	to	implement	and
apply	the	logistic	regression	algorithm	for	classification.	Chapter	9	Logistic	Regression	Logistic	regression	is	the	go-to	linear	classification	algorithm	for	two-class	problems.	It	is	easy	to	implement,	easy	to	understand	and	gets	great	results	on	a	wide	variety	of	problems,	even	when	the	expectations	the	method	has	for	your	data	are	violated.	In	this
tutorial,	you	will	discover	how	to	implement	logistic	regression	with	stochastic	gradient	descent	from	scratch	with	Python.	After	completing	this	tutorial,	you	will	know:	ˆ	How	to	make	predictions	with	a	logistic	regression	model.	ˆ	How	to	estimate	coefficients	using	stochastic	gradient	descent.	ˆ	How	to	apply	logistic	regression	to	a	real	prediction
problem.	Let’s	get	started.	9.1	Description	This	section	will	give	a	brief	description	of	the	logistic	regression	technique,	stochastic	gradient	descent	and	the	Pima	Indians	diabetes	dataset	we	will	use	in	this	tutorial.	9.1.1	Logistic	Regression	Logistic	regression	is	named	for	the	function	used	at	the	core	of	the	method,	the	logistic	function.	Logistic
regression	uses	an	equation	as	the	representation,	very	much	like	linear	regression.	Input	values	(X)	are	combined	linearly	using	weights	or	coefficient	values	to	predict	an	output	value	(y).	A	key	difference	from	linear	regression	is	that	the	output	value	being	modeled	is	a	binary	value	(0	or	1)	rather	than	a	numeric	value.	yhat	=	eb0+b1×x1	1	+
eb0+b1×x1	(9.1)	This	can	be	simplified	as:	yhat	=	1.0	(9.2)	1.0	+	Where	e	is	the	base	of	the	natural	logarithms	(Euler’s	number),	yhat	is	the	predicted	output,	b0	is	the	bias	or	intercept	term	and	b1	is	the	coefficient	for	the	single	input	value	(x1).	The	e−(b0+b1×x1)	70	9.2.	Tutorial	71	yhat	prediction	is	a	real	value	between	0	and	1	that	needs	to	be



rounded	to	an	integer	value	and	mapped	to	a	predicted	class	value.	Each	column	in	your	input	data	has	an	associated	b	coefficient	(a	constant	real	value)	that	must	be	learned	from	your	training	data.	The	actual	representation	of	the	model	that	you	would	store	in	memory	or	in	a	file	is	the	coefficients	in	the	equation	(the	beta	value	or	b’s).	The
coefficients	of	the	logistic	regression	algorithm	must	be	estimated	from	your	training	data.	9.1.2	Stochastic	Gradient	Descent	Logistic	Regression	uses	gradient	descent	to	update	the	coefficients.	Gradient	descent	was	introduced	and	described	in	Section	8.1.2.	Each	gradient	descent	iteration,	the	coefficients	(b)	in	machine	learning	language	are
updated	using	the	equation:	b	=	b	+	learning	rate	×	(y	−	yhat)	×	yhat	×	(1	−	yhat)	×	x	(9.3)	Where	b	is	the	coefficient	or	weight	being	optimized,	learning	rate	is	a	learning	rate	that	you	must	configure	(e.g.	0.01),	(y	-	yhat)	is	the	prediction	error	for	the	model	on	the	training	data	attributed	to	the	weight,	yhat	is	the	prediction	made	by	the	coefficients
and	x	is	the	input	value.	9.1.3	Pima	Indians	Diabetes	Dataset	In	this	tutorial	we	will	use	the	Pima	Indians	Diabetes	Dataset.	This	dataset	involves	the	prediction	of	the	onset	of	diabetes	within	5	years.	The	baseline	performance	on	the	problem	is	approximately	65%.	You	can	learn	more	about	it	in	Appendix	A,	Section	A.4.	Download	the	dataset	and	save
it	into	your	current	working	directory	with	the	filename	pima-indians-diabetes.csv.	9.2	Tutorial	This	tutorial	is	broken	down	into	3	parts.	1.	Making	Predictions.	2.	Estimating	Coefficients.	3.	Pima	Indians	Diabetes	Case	Study.	This	will	provide	the	foundation	you	need	to	implement	and	apply	logistic	regression	with	stochastic	gradient	descent	on	your
own	predictive	modeling	problems.	9.2.1	Making	Predictions	The	first	step	is	to	develop	a	function	that	can	make	predictions.	This	will	be	needed	both	in	the	evaluation	of	candidate	coefficient	values	in	stochastic	gradient	descent	and	after	the	model	is	finalized	and	we	wish	to	start	making	predictions	on	test	data	or	new	data.	Below	is	a	function
named	predict()	that	predicts	an	output	value	for	a	row	given	a	set	of	coefficients.	The	first	coefficient	in	is	always	the	intercept,	also	called	the	bias	or	b0	as	it	is	standalone	and	not	responsible	for	a	specific	input	value.	9.2.	Tutorial	72	#	Make	a	prediction	with	coefficients	def	predict(row,	coefficients):	yhat	=	coefficients[0]	for	i	in	range(len(row)-1):
yhat	+=	coefficients[i	+	1]	*	row[i]	return	1.0	/	(1.0	+	exp(-yhat))	Listing	9.1:	Function	To	Make	Logistic	Regression	Predictions	with	Coefficients.	We	can	contrive	a	small	dataset	to	test	our	predict()	function.	X1	2.7810836	1.465489372	3.396561688	1.38807019	3.06407232	7.627531214	5.332441248	6.922596716	8.675418651	7.673756466	X2
2.550537003	2.362125076	4.400293529	1.850220317	3.005305973	2.759262235	2.088626775	1.77106367	-0.242068655	3.508563011	Y	0	0	0	0	0	1	1	1	1	1	Listing	9.2:	Small	Contrived	Dataset	for	Testing	Logistic	Regression.	Below	is	a	plot	of	the	dataset	using	different	colors	to	show	the	different	classes	for	each	point.	Figure	9.1:	Plot	of	the	Small
Contrived	Dataset	for	Testing	Logistic	Regression.	We	can	also	use	previously	prepared	coefficients	to	make	predictions	for	this	dataset.	Putting	this	all	together	we	can	test	our	predict()	function	below.	#	Example	of	making	a	prediction	from	math	import	exp	9.2.	Tutorial	73	#	Make	a	prediction	with	coefficients	def	predict(row,	coefficients):	yhat	=
coefficients[0]	for	i	in	range(len(row)-1):	yhat	+=	coefficients[i	+	1]	*	row[i]	return	1.0	/	(1.0	+	exp(-yhat))	#	test	predictions	dataset	=	[[2.7810836,2.550537003,0],	[1.465489372,2.362125076,0],	[3.396561688,4.400293529,0],	[1.38807019,1.850220317,0],	[3.06407232,3.005305973,0],	[7.627531214,2.759262235,1],	[5.332441248,2.088626775,1],
[6.922596716,1.77106367,1],	[8.675418651,-0.242068655,1],	[7.673756466,3.508563011,1]]	coef	=	[-0.406605464,	0.852573316,	-1.104746259]	for	row	in	dataset:	yhat	=	predict(row,	coef)	print("Expected=%.3f,	Predicted=%.3f	[%d]"	%	(row[-1],	yhat,	round(yhat)))	Listing	9.3:	Example	of	Making	Predictions	on	the	Contrived	Dataset.	There	are	two
inputs	values	(X1	and	X2)	and	three	coefficient	values	(b0,	b1	and	b2).	The	prediction	equation	we	have	modeled	for	this	problem	is:	y=	1.0	e−(b0+b1×X1+b2×X2)	1.0	+	Or,	with	the	specific	coefficient	values	we	chose	by	hand	as:	y=	(9.4)	1.0	(9.5)	1.0	+	Running	this	function	we	get	predictions	that	are	reasonably	close	to	the	expected	output	(y)
values	and	when	rounded	make	correct	predictions	of	the	class.	Expected=0.000,	Expected=0.000,	Expected=0.000,	Expected=0.000,	Expected=0.000,	Expected=1.000,	Expected=1.000,	Expected=1.000,	Expected=1.000,	Expected=1.000,	e−(−0.406605464+0.852573316×X1+−1.104746259×X2)	Predicted=0.299	Predicted=0.146
Predicted=0.085	Predicted=0.220	Predicted=0.247	Predicted=0.955	Predicted=0.862	Predicted=0.972	Predicted=0.999	Predicted=0.905	[0]	[0]	[0]	[0]	[0]	[1]	[1]	[1]	[1]	[1]	Listing	9.4:	Example	Output	From	Making	Predictions	on	the	Contrived	Dataset.	Now	we	are	ready	to	implement	stochastic	gradient	descent	to	optimize	our	coefficient	values.
9.2.	Tutorial	9.2.2	74	Estimating	Coefficients	We	can	estimate	the	coefficient	values	for	our	training	data	using	stochastic	gradient	descent.	Stochastic	gradient	descent	requires	two	parameters:	ˆ	Learning	Rate:	Used	to	limit	the	amount	each	coefficient	is	corrected	each	time	it	is	updated.	ˆ	Epochs:	The	number	of	times	to	run	through	the	training
data	while	updating	the	coefficients.	These,	along	with	the	training	data	will	be	the	arguments	to	the	function.	There	are	3	loops	we	need	to	perform	in	the	function:	1.	Loop	over	each	epoch.	2.	Loop	over	each	row	in	the	training	data	for	an	epoch.	3.	Loop	over	each	coefficient	and	update	it	for	a	row	in	an	epoch.	As	you	can	see,	we	update	each
coefficient	for	each	row	in	the	training	data,	each	epoch.	Coefficients	are	updated	based	on	the	error	the	model	made.	The	error	is	calculated	as	the	difference	between	the	expected	output	value	and	the	prediction	made	with	the	candidate	coefficients.	There	is	one	coefficient	to	weight	each	input	attribute,	and	these	are	updated	in	a	consistent	way,
for	example:	b1(t	+	1)	=	b1(t)	+	learning	rate	×	(y(t)	−	yhat(t))	×	yhat(t)	×	(1	−	yhat(t))	×	x1(t)	(9.6)	The	special	coefficient	at	the	beginning	of	the	list,	also	called	the	intercept,	is	updated	in	a	similar	way,	except	without	an	input	as	it	is	not	associated	with	a	specific	input	value:	b0(t	+	1)	=	b0(t)	+	learning	rate	×	(y(t)	−	yhat(t))	×	yhat(t)	×	(1	−
yhat(t))	(9.7)	Now	we	can	put	all	of	this	together.	Below	is	a	function	named	coefficients	sgd()	that	calculates	coefficient	values	for	a	training	dataset	using	stochastic	gradient	descent.	#	Estimate	logistic	regression	coefficients	using	stochastic	gradient	descent	def	coefficients_sgd(train,	l_rate,	n_epoch):	coef	=	[0.0	for	i	in	range(len(train[0]))]	for
epoch	in	range(n_epoch):	sum_error	=	0	for	row	in	train:	yhat	=	predict(row,	coef)	error	=	row[-1]	-	yhat	sum_error	+=	error**2	coef[0]	=	coef[0]	+	l_rate	*	error	*	yhat	*	(1.0	-	yhat)	for	i	in	range(len(row)-1):	coef[i	+	1]	=	coef[i	+	1]	+	l_rate	*	error	*	yhat	*	(1.0	-	yhat)	*	row[i]	print('>epoch=%d,	lrate=%.3f,	error=%.3f'	%	(epoch,	l_rate,	sum_error))
return	coef	Listing	9.5:	Function	To	Estimate	Logistic	Regression	Coefficients.	9.2.	Tutorial	75	You	can	see	that	in	addition	we	keep	track	of	the	sum	of	the	squared	error	(a	positive	value)	each	epoch	so	that	we	can	print	out	a	nice	message	each	outer	loop.	We	can	test	this	function	on	the	same	small	contrived	dataset	from	above.	#	Example	of
estimating	coefficients	from	math	import	exp	#	Make	a	prediction	with	coefficients	def	predict(row,	coefficients):	yhat	=	coefficients[0]	for	i	in	range(len(row)-1):	yhat	+=	coefficients[i	+	1]	*	row[i]	return	1.0	/	(1.0	+	exp(-yhat))	#	Estimate	logistic	regression	coefficients	using	stochastic	gradient	descent	def	coefficients_sgd(train,	l_rate,	n_epoch):
coef	=	[0.0	for	i	in	range(len(train[0]))]	for	epoch	in	range(n_epoch):	sum_error	=	0	for	row	in	train:	yhat	=	predict(row,	coef)	error	=	row[-1]	-	yhat	sum_error	+=	error**2	coef[0]	=	coef[0]	+	l_rate	*	error	*	yhat	*	(1.0	-	yhat)	for	i	in	range(len(row)-1):	coef[i	+	1]	=	coef[i	+	1]	+	l_rate	*	error	*	yhat	*	(1.0	-	yhat)	*	row[i]	print('>epoch=%d,	lrate=%.3f,
error=%.3f'	%	(epoch,	l_rate,	sum_error))	return	coef	#	Calculate	coefficients	dataset	=	[[2.7810836,2.550537003,0],	[1.465489372,2.362125076,0],	[3.396561688,4.400293529,0],	[1.38807019,1.850220317,0],	[3.06407232,3.005305973,0],	[7.627531214,2.759262235,1],	[5.332441248,2.088626775,1],	[6.922596716,1.77106367,1],
[8.675418651,-0.242068655,1],	[7.673756466,3.508563011,1]]	l_rate	=	0.3	n_epoch	=	100	coef	=	coefficients_sgd(dataset,	l_rate,	n_epoch)	print(coef)	Listing	9.6:	Example	of	Estimating	Coefficients	on	the	Contrived	Dataset.	We	use	a	larger	learning	rate	of	0.3	and	train	the	model	for	100	epochs,	or	100	exposures	of	the	coefficients	to	the	entire
training	dataset.	Running	the	example	prints	a	message	each	epoch	with	the	sum	squared	error	for	that	epoch	and	the	final	set	of	coefficients.	...	>epoch=95,	>epoch=96,	>epoch=97,	>epoch=98,	lrate=0.300,	lrate=0.300,	lrate=0.300,	lrate=0.300,	error=0.023	error=0.023	error=0.023	error=0.023	9.2.	Tutorial	76	>epoch=99,	lrate=0.300,
error=0.022	[-0.8596443546618897,	1.5223825112460005,	-2.218700210565016]	Listing	9.7:	Example	Output	From	Estimating	Coefficients	on	the	Contrived	Dataset.	You	can	see	how	error	continues	to	drop	even	in	the	final	epoch.	We	could	probably	train	for	a	lot	longer	(more	epochs)	or	increase	the	amount	we	update	the	coefficients	each	epoch
(higher	learning	rate).	Experiment	and	see	what	you	come	up	with.	Now,	let’s	apply	this	algorithm	on	a	real	dataset.	9.2.3	Pima	Indians	Diabetes	Case	Study	In	this	section,	we	will	train	a	logistic	regression	model	using	stochastic	gradient	descent	on	the	diabetes	dataset.	The	example	assumes	that	a	CSV	copy	of	the	dataset	is	in	the	current	working
directory	with	the	filename	pima-indians-diabetes.csv.	The	dataset	is	first	loaded,	the	string	values	converted	to	numeric	and	each	column	is	normalized	to	values	in	the	range	of	0	to	1.	This	is	achieved	with	the	helper	functions	load	csv()	and	str	column	to	float()	to	load	and	prepare	the	dataset	and	dataset	minmax()	and	normalize	dataset()	to
normalize	it.	We	will	use	k-fold	cross-validation	to	estimate	the	performance	of	the	learned	model	on	unseen	data.	This	means	that	we	will	construct	and	evaluate	k	models	and	estimate	the	performance	as	the	mean	model	performance.	Classification	accuracy	will	be	used	to	evaluate	each	model.	These	behaviors	are	provided	in	the	cross	validation
split(),	accuracy	metric()	and	evaluate	algorithm()	helper	functions.	We	will	use	the	predict()	and	coefficients	sgd()	functions	created	above	and	a	new	logistic	regression()	function	to	train	the	model.	Below	is	the	complete	example.	#	Logistic	Regression	on	Diabetes	Dataset	from	random	import	seed	from	random	import	randrange	from	csv	import
reader	from	math	import	exp	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=
float(row[column].strip())	#	Find	the	min	and	max	values	for	each	column	def	dataset_minmax(dataset):	minmax	=	list()	for	i	in	range(len(dataset[0])):	9.2.	Tutorial	col_values	=	[row[i]	for	row	in	dataset]	value_min	=	min(col_values)	value_max	=	max(col_values)	minmax.append([value_min,	value_max])	return	minmax	#	Rescale	dataset	columns	to
the	range	0-1	def	normalize_dataset(dataset,	minmax):	for	row	in	dataset:	for	i	in	range(len(row)):	row[i]	=	(row[i]	-	minmax[i][0])	/	(minmax[i][1]	-	minmax[i][0])	#	Split	a	dataset	into	k	folds	def	cross_validation_split(dataset,	n_folds):	dataset_split	=	list()	dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/	n_folds)	for	_	in	range(n_folds):	fold	=
list()	while	len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))	fold.append(dataset_copy.pop(index))	dataset_split.append(fold)	return	dataset_split	#	Calculate	accuracy	percentage	def	accuracy_metric(actual,	predicted):	correct	=	0	for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/	float(len(actual))	*	100.0	#
Evaluate	an	algorithm	using	a	cross	validation	split	def	evaluate_algorithm(dataset,	algorithm,	n_folds,	*args):	folds	=	cross_validation_split(dataset,	n_folds)	scores	=	list()	for	fold	in	folds:	train_set	=	list(folds)	train_set.remove(fold)	train_set	=	sum(train_set,	[])	test_set	=	list()	for	row	in	fold:	row_copy	=	list(row)	test_set.append(row_copy)
row_copy[-1]	=	None	predicted	=	algorithm(train_set,	test_set,	*args)	actual	=	[row[-1]	for	row	in	fold]	accuracy	=	accuracy_metric(actual,	predicted)	scores.append(accuracy)	return	scores	#	Make	a	prediction	with	coefficients	def	predict(row,	coefficients):	yhat	=	coefficients[0]	for	i	in	range(len(row)-1):	77	9.2.	Tutorial	78	yhat	+=	coefficients[i	+
1]	*	row[i]	return	1.0	/	(1.0	+	exp(-yhat))	#	Estimate	logistic	regression	coefficients	using	stochastic	gradient	descent	def	coefficients_sgd(train,	l_rate,	n_epoch):	coef	=	[0.0	for	i	in	range(len(train[0]))]	for	_	in	range(n_epoch):	for	row	in	train:	yhat	=	predict(row,	coef)	error	=	row[-1]	-	yhat	coef[0]	=	coef[0]	+	l_rate	*	error	*	yhat	*	(1.0	-	yhat)	for	i	in
range(len(row)-1):	coef[i	+	1]	=	coef[i	+	1]	+	l_rate	*	error	*	yhat	*	(1.0	-	yhat)	*	row[i]	return	coef	#	Logistic	Regression	Algorithm	With	Stochastic	Gradient	Descent	def	logistic_regression(train,	test,	l_rate,	n_epoch):	predictions	=	list()	coef	=	coefficients_sgd(train,	l_rate,	n_epoch)	for	row	in	test:	yhat	=	predict(row,	coef)	yhat	=	round(yhat)
predictions.append(yhat)	return(predictions)	#	Test	the	logistic	regression	algorithm	on	the	diabetes	dataset	seed(1)	#	load	and	prepare	data	filename	=	'pima-indians-diabetes.csv'	dataset	=	load_csv(filename)	for	i	in	range(len(dataset[0])):	str_column_to_float(dataset,	i)	#	normalize	minmax	=	dataset_minmax(dataset)	normalize_dataset(dataset,
minmax)	#	evaluate	algorithm	n_folds	=	5	l_rate	=	0.1	n_epoch	=	100	scores	=	evaluate_algorithm(dataset,	logistic_regression,	n_folds,	l_rate,	n_epoch)	print('Scores:	%s'	%	scores)	print('Mean	Accuracy:	%.3f%%'	%	(sum(scores)/float(len(scores))))	Listing	9.8:	Example	of	Logistic	Regression	Applied	to	the	Diabetes	Dataset.	A	k	value	of	5	was	used
for	cross-validation,	giving	each	fold	768	=	153.6	or	just	over	150	5	records	to	be	evaluated	upon	each	iteration.	A	learning	rate	of	0.1	and	100	training	epochs	were	chosen	with	a	little	experimentation.	You	can	try	your	own	configurations	and	see	if	you	can	beat	my	score.	Running	this	example	prints	the	scores	for	each	of	the	5	cross-validation	folds,
then	prints	the	mean	classification	accuracy.	We	can	see	that	the	accuracy	is	about	77%,	higher	than	the	baseline	value	of	65%.	Scores:	[73.8562091503268,	78.43137254901961,	81.69934640522875,	75.81699346405229,	75.81699346405229]	Mean	Accuracy:	77.124%	9.3.	Extensions	79	Listing	9.9:	Example	Output	From	Logistic	Regression	on	the
Diabetes	Dataset.	9.3	Extensions	This	section	lists	a	number	of	extensions	to	this	tutorial	that	you	may	wish	to	consider	exploring.	ˆ	Tune	The	Example.	Tune	the	learning	rate,	number	of	epochs	and	even	data	preparation	method	to	get	an	improved	score	on	the	dataset.	ˆ	Batch	Stochastic	Gradient	Descent.	Change	the	stochastic	gradient	descent
algorithm	to	accumulate	updates	across	each	epoch	and	only	update	the	coefficients	in	a	batch	at	the	end	of	the	epoch.	ˆ	Additional	Classification	Problems.	Apply	the	technique	to	other	binary	(2	class)	classification	problems	on	the	UCI	machine	learning	repository.	9.4	Review	In	this	tutorial,	you	discovered	how	to	implement	logistic	regression	using
stochastic	gradient	descent	from	scratch	with	Python.	Specifically,	you	learned:	ˆ	How	to	make	predictions	for	a	multivariate	classification	problem.	ˆ	How	to	optimize	a	set	of	coefficients	using	stochastic	gradient	descent.	ˆ	How	to	apply	the	technique	to	a	real	classification	predictive	modeling	problem.	9.4.1	Further	Reading	ˆ	Section	4.3	Logistic
Regression,	page	130,	An	Introduction	to	Statistical	Learning,	2014.	ˆ	Section	18.6.	Regression	and	Classification	with	Linear	Models,	page	717,	Artificial	Intelligence:	A	Modern	Approach,	2010.	ˆ	Section	12.2	Logistic	Regression,	page	282,	Applied	Predictive	Modeling,	2013	ˆ	Section	4.6,	Linear	Models,	page	119,	Data	Mining:	Practical	Machine
Learning	Tools	and	Techniques,	second	edition,	2005.	9.4.2	Next	In	the	next	tutorial,	you	will	discover	how	to	implement	and	apply	the	Perceptron	algorithm	for	classification.	Chapter	10	Perceptron	The	Perceptron	algorithm	is	the	simplest	type	of	artificial	neural	network.	It	is	a	model	of	a	single	neuron	that	can	be	used	for	two-class	classification
problems	and	provides	the	foundation	for	later	developing	much	larger	networks.	In	this	tutorial,	you	will	discover	how	to	implement	the	Perceptron	algorithm	from	scratch	with	Python.	After	completing	this	tutorial,	you	will	know:	ˆ	How	to	train	the	network	weights	for	the	Perceptron.	ˆ	How	to	make	predictions	with	the	Perceptron.	ˆ	How	to
implement	the	Perceptron	algorithm	for	a	real-world	classification	problem.	Let’s	get	started.	10.1	Description	This	section	provides	a	brief	introduction	to	the	Perceptron	algorithm	and	the	Sonar	dataset	to	which	we	will	later	apply	it.	10.1.1	Perceptron	Algorithm	The	Perceptron	is	inspired	by	the	information	processing	of	a	single	neural	cell	called	a
neuron.	A	neuron	accepts	input	signals	via	its	dendrites,	which	pass	the	electrical	signal	down	to	the	cell	body.	In	a	similar	way,	the	Perceptron	receives	input	signals	from	examples	of	training	data	that	we	weight	and	combined	in	a	linear	equation	called	the	activation.	activation	=	bias	+	n	X	weighti	×	xi	(10.1)	i=1	The	activation	is	then	transformed
into	an	output	value	or	prediction	using	a	transfer	function,	such	as	the	step	transfer	function.	prediction	=	1.0	IF	activation	≥	0.0	ELSE	0.0	(10.2)	In	this	way,	the	Perceptron	is	a	classification	algorithm	for	problems	with	two	classes	(0	and	1)	where	a	linear	equation	(like	a	line	or	hyperplane)	can	be	used	to	separate	the	two	80	10.2.	Tutorial	81
classes.	It	is	closely	related	to	linear	regression	and	logistic	regression	that	make	predictions	in	a	similar	way	(e.g.	a	weighted	sum	of	inputs).	The	weights	of	the	Perceptron	algorithm	must	be	estimated	from	your	training	data	using	stochastic	gradient	descent.	10.1.2	Stochastic	Gradient	Descent	The	Perceptron	algorithm	uses	gradient	descent	to
update	the	weights.	Gradient	descent	was	introduced	and	described	in	Section	8.1.2.	Each	iteration	of	gradient	descent,	the	weights	(w)	are	updated	using	the	equation:	w	=	w	+	learning	rate	×	(expected	−	predicted)	×	x	(10.3)	Where	w	is	weight	being	optimized,	learning	rate	is	a	learning	rate	that	you	must	configure	(e.g.	0.01),	(expected	-
predicted)	is	the	prediction	error	for	the	model	on	the	training	data	attributed	to	the	weight	and	x	is	the	input	value.	10.1.3	Sonar	Dataset	In	this	tutorial	we	will	use	the	Sonar	Dataset.	This	dataset	involves	the	discrimination	between	mines	and	rocks.	The	baseline	performance	on	the	problem	is	approximately	53%.	You	can	learn	more	about	it	in
Appendix	A,	Section	A.5.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	sonar.all-data.csv.	10.2	Tutorial	This	tutorial	is	broken	down	into	3	parts:	1.	Making	Predictions.	2.	Training	Network	Weights.	3.	Sonar	Case	Study.	These	steps	will	give	you	the	foundation	to	implement	and	apply	the	Perceptron	algorithm
to	your	own	classification	predictive	modeling	problems.	10.2.1	Making	Predictions	The	first	step	is	to	develop	a	function	that	can	make	predictions.	This	will	be	needed	both	in	the	evaluation	of	candidate	weight	values	in	stochastic	gradient	descent,	and	after	the	model	is	finalized	and	we	wish	to	start	making	predictions	on	test	data	or	new	data.
Below	is	a	function	named	predict()	that	predicts	an	output	value	for	a	row	given	a	set	of	weights.	The	first	weight	is	always	the	bias	as	it	is	standalone	and	not	responsible	for	a	specific	input	value.	#	Make	a	prediction	with	weights	def	predict(row,	weights):	activation	=	weights[0]	for	i	in	range(len(row)-1):	activation	+=	weights[i	+	1]	*	row[i]	10.2.
Tutorial	82	return	1.0	if	activation	>=	0.0	else	0.0	Listing	10.1:	Function	To	Make	Predictions	with	Perceptron	Weights.	We	can	contrive	a	small	dataset	to	test	our	prediction	function.	X1	2.7810836	1.465489372	3.396561688	1.38807019	3.06407232	7.627531214	5.332441248	6.922596716	8.675418651	7.673756466	X2	2.550537003	2.362125076
4.400293529	1.850220317	3.005305973	2.759262235	2.088626775	1.77106367	-0.242068655	3.508563011	Y	0	0	0	0	0	1	1	1	1	1	Listing	10.2:	Small	Contrived	Dataset	for	Testing	Logistic	Regression.	Below	is	a	plot	of	the	dataset	using	different	colors	to	show	the	different	classes	for	each	point.	Figure	10.1:	Plot	of	the	Small	Contrived	Dataset	for
Testing	the	Perceptron	algorithm.	We	can	also	use	previously	prepared	weights	to	make	predictions	for	this	dataset.	Putting	this	all	together	we	can	test	our	predict()	function	below.	#	Example	of	making	predictions	#	Make	a	prediction	with	weights	def	predict(row,	weights):	activation	=	weights[0]	for	i	in	range(len(row)-1):	activation	+=	weights[i
+	1]	*	row[i]	return	1.0	if	activation	>=	0.0	else	0.0	10.2.	Tutorial	83	#	test	predictions	dataset	=	[[2.7810836,2.550537003,0],	[1.465489372,2.362125076,0],	[3.396561688,4.400293529,0],	[1.38807019,1.850220317,0],	[3.06407232,3.005305973,0],	[7.627531214,2.759262235,1],	[5.332441248,2.088626775,1],	[6.922596716,1.77106367,1],
[8.675418651,-0.242068655,1],	[7.673756466,3.508563011,1]]	weights	=	[-0.1,	0.20653640140000007,	-0.23418117710000003]	for	row	in	dataset:	prediction	=	predict(row,	weights)	print("Expected=%d,	Predicted=%d"	%	(row[-1],	prediction))	Listing	10.3:	Example	of	Making	Predictions	on	the	Contrived	Dataset.	There	are	two	inputs	values	(X1
and	X2)	and	three	weight	values	(bias,	w1	and	w2).	The	activation	equation	we	have	modeled	for	this	problem	is:	activation	=	(w1	×	X1)	+	(w2	×	X2)	+	bias	(10.4)	Or,	with	the	specific	weight	values	we	chose	by	hand	as:	activation	=	(0.206	×	X1)	+	(−0.234	×	X2)	+	−0.1	(10.5)	Running	this	function	we	get	predictions	that	match	the	expected	output
(y)	values.	Expected=0,	Expected=0,	Expected=0,	Expected=0,	Expected=0,	Expected=1,	Expected=1,	Expected=1,	Expected=1,	Expected=1,	Predicted=0	Predicted=0	Predicted=0	Predicted=0	Predicted=0	Predicted=1	Predicted=1	Predicted=1	Predicted=1	Predicted=1	Listing	10.4:	Example	Output	From	Making	Predictions	on	the	Contrived
Dataset.	Now	we	are	ready	to	implement	stochastic	gradient	descent	to	optimize	our	weight	values.	10.2.2	Training	Network	Weights	We	can	estimate	the	weight	values	for	our	training	data	using	stochastic	gradient	descent.	Stochastic	gradient	descent	requires	two	parameters:	ˆ	Learning	Rate:	Used	to	limit	the	amount	each	weight	is	corrected	each
time	it	is	updated.	ˆ	Epochs:	The	number	of	times	to	run	through	the	training	data	while	updating	the	weight.	These,	along	with	the	training	data	will	be	the	arguments	to	the	function.	There	are	3	loops	we	need	to	perform	in	the	function:	10.2.	Tutorial	84	1.	Loop	over	each	epoch.	2.	Loop	over	each	row	in	the	training	data	for	an	epoch.	3.	Loop	over
each	weight	and	update	it	for	a	row	in	an	epoch.	As	you	can	see,	we	update	each	weight	for	each	row	in	the	training	data,	each	epoch.	Weights	are	updated	based	on	the	error	the	model	made.	The	error	is	calculated	as	the	difference	between	the	expected	output	value	and	the	prediction	made	with	the	candidate	weights.	There	is	one	weight	for	each
input	attribute,	and	these	are	updated	in	a	consistent	way.	For	example:	w(t	+	1)	=	w(t)	+	learning	rate	×	(expected(t)	−	predicted(t))	×	x(t)	(10.6)	The	bias	is	updated	in	a	similar	way,	except	without	an	input	as	it	is	not	associated	with	a	specific	input	value:	bias(t	+	1)	=	bias(t)	+	learning	rate	×	(expected(t)	−	predicted(t))	(10.7)	Now	we	can	put	all
of	this	together.	Below	is	a	function	named	train	weights()	that	calculates	weight	values	for	a	training	dataset	using	stochastic	gradient	descent.	#	Estimate	Perceptron	weights	using	stochastic	gradient	descent	def	train_weights(train,	l_rate,	n_epoch):	weights	=	[0.0	for	i	in	range(len(train[0]))]	for	epoch	in	range(n_epoch):	sum_error	=	0.0	for	row	in
train:	prediction	=	predict(row,	weights)	error	=	row[-1]	-	prediction	sum_error	+=	error**2	weights[0]	=	weights[0]	+	l_rate	*	error	for	i	in	range(len(row)-1):	weights[i	+	1]	=	weights[i	+	1]	+	l_rate	*	error	*	row[i]	print('>epoch=%d,	lrate=%.3f,	error=%.3f'	%	(epoch,	l_rate,	sum_error))	return	weights	Listing	10.5:	Function	To	Estimate	Weights	for
the	Perceptron.	You	can	see	that	we	also	keep	track	of	the	sum	of	the	squared	error	(a	positive	value)	each	epoch	so	that	we	can	print	out	a	nice	message	each	outer	loop.	We	can	test	this	function	on	the	same	small	contrived	dataset	from	above.	#	Example	of	training	weights	#	Make	a	prediction	with	weights	def	predict(row,	weights):	activation	=
weights[0]	for	i	in	range(len(row)-1):	activation	+=	weights[i	+	1]	*	row[i]	return	1.0	if	activation	>=	0.0	else	0.0	#	Estimate	Perceptron	weights	using	stochastic	gradient	descent	def	train_weights(train,	l_rate,	n_epoch):	weights	=	[0.0	for	i	in	range(len(train[0]))]	10.2.	Tutorial	85	for	epoch	in	range(n_epoch):	sum_error	=	0.0	for	row	in	train:
prediction	=	predict(row,	weights)	error	=	row[-1]	-	prediction	sum_error	+=	error**2	weights[0]	=	weights[0]	+	l_rate	*	error	for	i	in	range(len(row)-1):	weights[i	+	1]	=	weights[i	+	1]	+	l_rate	*	error	*	row[i]	print('>epoch=%d,	lrate=%.3f,	error=%.3f'	%	(epoch,	l_rate,	sum_error))	return	weights	#	Calculate	weights	dataset	=
[[2.7810836,2.550537003,0],	[1.465489372,2.362125076,0],	[3.396561688,4.400293529,0],	[1.38807019,1.850220317,0],	[3.06407232,3.005305973,0],	[7.627531214,2.759262235,1],	[5.332441248,2.088626775,1],	[6.922596716,1.77106367,1],	[8.675418651,-0.242068655,1],	[7.673756466,3.508563011,1]]	l_rate	=	0.1	n_epoch	=	5	weights	=
train_weights(dataset,	l_rate,	n_epoch)	print(weights)	Listing	10.6:	Example	of	Estimating	Weights	on	the	Contrived	Dataset.	We	use	a	learning	rate	of	0.1	and	train	the	model	for	only	5	epochs,	or	5	exposures	of	the	weights	to	the	entire	training	dataset.	Running	the	example	prints	a	message	each	epoch	with	the	sum	squared	error	for	that	epoch	and
the	final	set	of	weights.	>epoch=0,	lrate=0.100,	error=2.000	>epoch=1,	lrate=0.100,	error=1.000	>epoch=2,	lrate=0.100,	error=0.000	>epoch=3,	lrate=0.100,	error=0.000	>epoch=4,	lrate=0.100,	error=0.000	[-0.1,	0.20653640140000007,	-0.23418117710000003]	Listing	10.7:	Example	Output	From	Estimating	Weights	on	the	Contrived	Dataset.
You	can	see	how	the	problem	is	learned	very	quickly	by	the	algorithm.	Now,	let’s	apply	this	algorithm	on	a	real	dataset.	10.2.3	Sonar	Case	Study	In	this	section,	we	will	train	a	Perceptron	model	using	stochastic	gradient	descent	on	the	Sonar	dataset.	The	example	assumes	that	a	CSV	copy	of	the	dataset	is	in	the	current	working	directory	with	the	file
name	sonar.all-data.csv.	The	dataset	is	first	loaded,	the	string	values	converted	to	numeric	and	the	output	column	is	converted	from	strings	to	the	integer	values	of	0	to	1.	This	is	achieved	with	helper	functions	load	csv(),	str	column	to	float()	and	str	column	to	int()	to	load	and	prepare	the	dataset.	10.2.	Tutorial	86	We	will	use	k-fold	cross-validation	to
estimate	the	performance	of	the	learned	model	on	unseen	data.	This	means	that	we	will	construct	and	evaluate	k	models	and	estimate	the	performance	as	the	mean	model	error.	Classification	accuracy	will	be	used	to	evaluate	each	model.	These	behaviors	are	provided	in	the	cross	validation	split(),	accuracy	metric()	and	evaluate	algorithm()	helper
functions.	We	will	use	the	predict()	and	train	weights()	functions	created	above	to	train	the	model	and	a	new	perceptron()	function	to	tie	them	together.	Below	is	the	complete	example.	#	Perceptron	Algorithm	on	the	Sonar	Dataset	from	random	import	seed	from	random	import	randrange	from	csv	import	reader	#	Load	a	CSV	file	def
load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Convert	string	column	to	integer	def
str_column_to_int(dataset,	column):	class_values	=	[row[column]	for	row	in	dataset]	unique	=	set(class_values)	lookup	=	dict()	for	i,	value	in	enumerate(unique):	lookup[value]	=	i	for	row	in	dataset:	row[column]	=	lookup[row[column]]	return	lookup	#	Split	a	dataset	into	k	folds	def	cross_validation_split(dataset,	n_folds):	dataset_split	=	list()
dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/	n_folds)	for	_	in	range(n_folds):	fold	=	list()	while	len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))	fold.append(dataset_copy.pop(index))	dataset_split.append(fold)	return	dataset_split	#	Calculate	accuracy	percentage	def	accuracy_metric(actual,	predicted):	10.2.	Tutorial	correct	=	0
for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/	float(len(actual))	*	100.0	#	Evaluate	an	algorithm	using	a	cross	validation	split	def	evaluate_algorithm(dataset,	algorithm,	n_folds,	*args):	folds	=	cross_validation_split(dataset,	n_folds)	scores	=	list()	for	fold	in	folds:	train_set	=	list(folds)	train_set.remove(fold)
train_set	=	sum(train_set,	[])	test_set	=	list()	for	row	in	fold:	row_copy	=	list(row)	test_set.append(row_copy)	row_copy[-1]	=	None	predicted	=	algorithm(train_set,	test_set,	*args)	actual	=	[row[-1]	for	row	in	fold]	accuracy	=	accuracy_metric(actual,	predicted)	scores.append(accuracy)	return	scores	#	Make	a	prediction	with	weights	def	predict(row,
weights):	activation	=	weights[0]	for	i	in	range(len(row)-1):	activation	+=	weights[i	+	1]	*	row[i]	return	1.0	if	activation	>=	0.0	else	0.0	#	Estimate	Perceptron	weights	using	stochastic	gradient	descent	def	train_weights(train,	l_rate,	n_epoch):	weights	=	[0.0	for	i	in	range(len(train[0]))]	for	_	in	range(n_epoch):	for	row	in	train:	prediction	=
predict(row,	weights)	error	=	row[-1]	-	prediction	weights[0]	=	weights[0]	+	l_rate	*	error	for	i	in	range(len(row)-1):	weights[i	+	1]	=	weights[i	+	1]	+	l_rate	*	error	*	row[i]	return	weights	#	Perceptron	Algorithm	With	Stochastic	Gradient	Descent	def	perceptron(train,	test,	l_rate,	n_epoch):	predictions	=	list()	weights	=	train_weights(train,	l_rate,
n_epoch)	for	row	in	test:	prediction	=	predict(row,	weights)	predictions.append(prediction)	return(predictions)	#	Test	the	Perceptron	algorithm	on	the	sonar	dataset	seed(1)	#	load	and	prepare	data	87	10.3.	Extensions	88	filename	=	'sonar.all-data.csv'	dataset	=	load_csv(filename)	for	i	in	range(len(dataset[0])-1):	str_column_to_float(dataset,	i)	#
convert	string	class	to	integers	str_column_to_int(dataset,	len(dataset[0])-1)	#	evaluate	algorithm	n_folds	=	3	l_rate	=	0.01	n_epoch	=	500	scores	=	evaluate_algorithm(dataset,	perceptron,	n_folds,	l_rate,	n_epoch)	print('Scores:	%s'	%	scores)	print('Mean	Accuracy:	%.3f%%'	%	(sum(scores)/float(len(scores))))	Listing	10.8:	Example	of	the	Perceptron
Algorithm	on	the	Sonar	Dataset.	A	k	value	of	3	was	used	for	cross-validation,	giving	each	fold	208	=	69.3	or	just	under	70	3	records	to	be	evaluated	upon	each	iteration.	A	learning	rate	of	0.1	and	500	training	epochs	were	chosen	with	a	little	experimentation.	You	can	try	your	own	configurations	and	see	if	you	can	beat	my	score.	Running	this	example
prints	the	scores	for	each	of	the	3	cross-validation	folds	then	prints	the	mean	classification	accuracy.	We	can	see	that	the	accuracy	is	about	72%,	higher	than	the	baseline	value	of	just	over	50%.	Scores:	[76.81159420289855,	69.56521739130434,	72.46376811594203]	Mean	Accuracy:	72.947%	Listing	10.9:	Example	Output	of	the	Perceptron
Algorithm	on	the	Sonar	Dataset.	10.3	Extensions	This	section	lists	extensions	to	this	tutorial	that	you	may	wish	to	consider	exploring.	ˆ	Tune	The	Example.	Tune	the	learning	rate,	number	of	epochs	and	even	data	preparation	method	to	get	an	improved	score	on	the	dataset.	ˆ	Batch	Stochastic	Gradient	Descent.	Change	the	stochastic	gradient	descent
algorithm	to	accumulate	updates	across	each	epoch	and	only	update	the	weights	in	a	batch	at	the	end	of	the	epoch.	ˆ	Additional	Regression	Problems.	Apply	the	technique	to	other	classification	problems	on	the	UCI	machine	learning	repository.	10.4	Review	In	this	tutorial,	you	discovered	how	to	implement	the	Perceptron	algorithm	using	stochastic
gradient	descent	from	scratch	with	Python.	Specifically,	you	learned:	ˆ	How	to	make	predictions	for	a	binary	classification	problem.	ˆ	How	to	optimize	a	set	of	weights	using	stochastic	gradient	descent.	ˆ	How	to	apply	the	technique	to	a	real	classification	predictive	modeling	problem.	10.4.	Review	10.4.1	89	Further	Reading	ˆ	Section	18.6.	Regression
and	Classification	with	Linear	Models,	page	727,	Artificial	Intelligence:	A	Modern	Approach,	2010.	ˆ	Section	4.6,	Linear	Models,	page	119,	Data	Mining:	Practical	Machine	Learning	Tools	and	Techniques,	second	edition,	2005.	10.4.2	Next	This	ends	Part	2	on	linear	algorithms.	Next,	in	Part	3	you	will	look	at	nonlinear	algorithms.	In	the	next	tutorial,
you	will	discover	how	to	implement	and	apply	the	decision	tree	algorithm	for	classification.	Part	III	Nonlinear	Algorithms	90	Chapter	11	Classification	and	Regression	Trees	Decision	trees	are	a	powerful	prediction	method	and	extremely	popular.	They	are	popular	because	the	final	model	is	so	easy	to	understand	by	practitioners	and	domain	experts
alike.	The	final	decision	tree	can	explain	exactly	why	a	specific	prediction	was	made,	making	it	very	attractive	for	operational	use.	Decision	trees	also	provide	the	foundation	for	more	advanced	ensemble	methods	such	as	bagging,	random	forests	and	gradient	boosting.	In	this	tutorial,	you	will	discover	how	to	implement	the	Classification	And
Regression	Tree	algorithm	from	scratch	with	Python.	After	completing	this	tutorial,	you	will	know:	ˆ	How	to	calculate	and	evaluate	candidate	split	points	in	a	data.	ˆ	How	to	arrange	splits	into	a	decision	tree	structure.	ˆ	How	to	apply	the	classification	and	regression	tree	algorithm	to	a	real	problem.	Let’s	get	started.	11.1	Descriptions	This	section
provides	a	brief	introduction	to	the	Classification	and	Regression	Tree	algorithm	and	the	Banknote	dataset	used	in	this	tutorial.	11.1.1	Classification	and	Regression	Trees	Classification	and	Regression	Trees	or	CART	for	short	is	an	acronym	introduced	by	Leo	Breiman	to	refer	to	Decision	Tree	algorithms	that	can	be	used	for	classification	or	regression
predictive	modeling	problems.	We	will	focus	on	using	CART	for	classification	in	this	tutorial.	The	representation	of	the	CART	model	is	a	binary	tree.	This	is	the	same	binary	tree	from	algorithms	and	data	structures,	nothing	too	fancy	(each	node	can	have	zero,	one	or	two	child	nodes).	A	node	represents	a	single	input	variable	(X)	and	a	split	point	on
that	variable,	assuming	the	variable	is	numeric.	The	leaf	nodes	(also	called	terminal	nodes)	of	the	tree	contain	an	output	variable	(y)	which	is	used	to	make	a	prediction.	Once	created,	a	tree	can	be	navigated	with	a	new	row	of	data	following	each	branch	with	the	splits	until	a	final	prediction	is	made.	91	11.2.	Tutorial	92	Creating	a	binary	decision	tree
is	actually	a	process	of	dividing	up	the	input	space.	A	greedy	approach	is	used	called	recursive	binary	splitting.	This	is	a	numerical	procedure	where	all	the	values	are	lined	up	and	different	split	points	are	tried	and	tested	using	a	cost	function.	The	split	with	the	best	cost	(lowest	cost	because	we	minimize	cost)	is	selected.	All	input	variables	and	all
possible	split	points	are	evaluated	and	chosen	in	a	greedy	manner	based	on	the	cost	function.	ˆ	Regression:	The	cost	function	that	is	minimized	to	choose	split	points	is	the	sum	squared	error	across	all	training	samples	that	fall	within	the	rectangle.	ˆ	Classification:	The	Gini	cost	function	is	used	which	provides	an	indication	of	how	pure	the	nodes	are,
where	node	purity	refers	to	how	mixed	the	training	data	assigned	to	each	node	is.	Splitting	continues	until	nodes	contain	a	minimum	number	of	training	examples	or	a	maximum	tree	depth	is	reached.	11.1.2	Banknote	Dataset	In	this	tutorial	we	will	use	the	Banknote	Dataset.	This	dataset	involves	the	discrimination	between	authentic	and	inauthentic
banknotes.	The	baseline	performance	on	the	problem	is	approximately	50%.	You	can	learn	more	about	it	in	Appendix	A,	Section	A.6.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	data	banknote	authentication.csv.	11.2	Tutorial	This	tutorial	is	broken	down	into	5	parts:	1.	Gini	Index.	2.	Create	Split.	3.	Build	a
Tree.	4.	Make	a	Prediction.	5.	Banknote	Case	Study.	These	steps	will	give	you	the	foundation	that	you	need	to	implement	the	CART	algorithm	from	scratch	and	apply	it	to	your	own	predictive	modeling	problems.	11.2.1	Gini	Index	The	Gini	index	is	the	name	of	the	cost	function	used	to	evaluate	splits	in	the	dataset.	A	split	in	the	dataset	involves	one
input	attribute	and	one	value	for	that	attribute.	It	can	be	used	to	divide	training	patterns	into	two	groups	of	rows.	A	Gini	score	gives	an	idea	of	how	good	a	split	is	by	how	mixed	the	classes	are	in	the	two	groups	created	by	the	split.	A	perfect	separation	results	in	a	Gini	score	of	0,	whereas	the	worst	11.2.	Tutorial	93	case	split	that	results	in	50/50
classes	in	each	group	results	in	a	Gini	score	of	0.5	(for	a	2	class	problem).	Calculating	Gini	is	best	demonstrated	with	an	example.	We	have	two	groups	of	data	with	2	rows	in	each	group.	The	rows	in	the	first	group	all	belong	to	class	0	and	the	rows	in	the	second	group	belong	to	class	1,	so	it’s	a	perfect	split.	We	first	need	to	calculate	the	proportion	of
classes	in	each	group.	proportion	=	count(class	value)	count(rows)	(11.1)	The	proportions	for	this	example	would	be:	2	=1	2	0	group	1	class	1	=	=	0	2	0	group	2	class	0	=	=	0	2	2	group	2	class	1	=	=	1	2	Gini	is	then	calculated	for	each	child	node	as	follows:	group	1	class	0	=	(11.2)	n	X	(proportioni	×	(1.0	−	proportioni	))	gini	index	=	i=1	=1−	n	X	(11.3)
proportion2i	i=1	The	Gini	index	for	each	group	must	then	be	weighted	by	the	size	of	the	group,	relative	to	all	of	the	samples	in	the	parent,	e.g.	all	samples	that	are	currently	being	grouped.	We	can	add	this	weighting	to	the	Gini	calculation	for	a	group	as	follows:	gini	index	=	(1	−	n	X	proportion2i	)	×	i=1	group	size	total	samples	(11.4)	In	this	example
the	Gini	scores	for	each	group	are	calculated	as	follows:	Gini(group	1)	=	(1	−	(1	×	1	+	0	×	0))	×	2	4	Gini(group	1)	=	0.0	×	0.5	Gini(group	1)	=	0.0	2	Gini(group	2)	=	(1	−	(0	×	0	+	1	×	1))	×	4	Gini(group	2)	=	0.0	×	0.5	Gini(group	2)	=	0.0	(11.5)	The	scores	are	then	added	across	each	child	node	at	the	split	point	to	give	a	final	Gini	score	for	the	split
point	that	can	be	compared	to	other	candidate	split	points.	The	Gini	for	this	split	point	would	then	be	calculated	as	0.0	+	0.0	or	a	perfect	Gini	score	of	0.0.	11.2.	Tutorial	94	Below	is	a	function	named	gini	index()	that	calculates	the	Gini	index	for	a	list	of	groups	and	a	list	of	known	class	values.	You	can	see	that	there	are	some	safety	checks	in	there	to
avoid	a	divide	by	zero	for	an	empty	group.	#	Calculate	the	Gini	index	for	a	split	dataset	def	gini_index(groups,	classes):	#	count	all	samples	at	split	point	n_instances	=	float(sum([len(group)	for	group	in	groups]))	#	sum	weighted	Gini	index	for	each	group	gini	=	0.0	for	group	in	groups:	size	=	float(len(group))	#	avoid	divide	by	zero	if	size	==	0:
continue	score	=	0.0	#	score	the	group	based	on	the	score	for	each	class	for	class_val	in	classes:	p	=	[row[-1]	for	row	in	group].count(class_val)	/	size	score	+=	p	*	p	#	weight	the	group	score	by	its	relative	size	gini	+=	(1.0	-	score)	*	(size	/	n_instances)	return	gini	Listing	11.1:	Function	To	Calculate	the	Gini	Index	of	a	Dataset	split.	We	can	test	this
function	with	our	worked	example	above.	We	can	also	test	it	for	the	worst	case	of	a	50/50	split	in	each	group.	The	complete	example	is	listed	below.	#	Example	of	calculating	Gini	index	#	Calculate	the	Gini	index	for	a	split	dataset	def	gini_index(groups,	classes):	#	count	all	samples	at	split	point	n_instances	=	float(sum([len(group)	for	group	in
groups]))	#	sum	weighted	Gini	index	for	each	group	gini	=	0.0	for	group	in	groups:	size	=	float(len(group))	#	avoid	divide	by	zero	if	size	==	0:	continue	score	=	0.0	#	score	the	group	based	on	the	score	for	each	class	for	class_val	in	classes:	p	=	[row[-1]	for	row	in	group].count(class_val)	/	size	score	+=	p	*	p	#	weight	the	group	score	by	its	relative
size	gini	+=	(1.0	-	score)	*	(size	/	n_instances)	return	gini	#	test	Gini	values	print(gini_index([[[1,	1],	[1,	0]],	[[1,	1],	[1,	0]]],	[0,	1]))	print(gini_index([[[1,	0],	[1,	0]],	[[1,	1],	[1,	1]]],	[0,	1]))	Listing	11.2:	Example	of	Calculating	Gini	Index	on	a	Contrived	Dataset.	11.2.	Tutorial	95	Running	the	example	prints	the	two	Gini	scores,	first	the	score	for	the	worst
case	at	0.5	followed	by	the	score	for	the	best	case	at	0.0.	0.5	0.0	Listing	11.3:	Example	Output	of	Calculating	Gini	Index.	Now	that	we	know	how	to	evaluate	the	results	of	a	split,	let’s	look	at	creating	splits.	11.2.2	Create	Split	A	split	is	comprised	of	an	attribute	in	the	dataset	and	a	value.	We	can	summarize	this	as	the	index	of	an	attribute	to	split	and
the	value	by	which	to	split	rows	on	that	attribute.	This	is	just	a	useful	shorthand	for	indexing	into	rows	of	data.	Creating	a	split	involves	three	parts,	the	first	we	have	already	looked	at	which	is	calculating	the	Gini	score.	The	remaining	two	parts	are:	1.	Splitting	a	Dataset.	2.	Evaluating	All	Splits.	Let’s	take	a	look	at	each.	Splitting	a	Dataset	Splitting	a
dataset	means	separating	a	dataset	into	two	lists	of	rows	given	the	index	of	an	attribute	and	a	split	value	for	that	attribute.	Once	we	have	the	two	groups,	we	can	then	use	our	Gini	score	above	to	evaluate	the	cost	of	the	split.	Splitting	a	dataset	involves	iterating	over	each	row,	checking	if	the	attribute	value	is	below	or	above	the	split	value	and
assigning	it	to	the	left	or	right	group	respectively.	Below	is	a	function	named	test	split()	that	implements	this	procedure.	#	Split	a	dataset	based	on	an	attribute	and	an	attribute	value	def	test_split(index,	value,	dataset):	left,	right	=	list(),	list()	for	row	in	dataset:	if	row[index]	<	value:	left.append(row)	else:	right.append(row)	return	left,	right	Listing
11.4:	Function	To	Split	a	Dataset	Based	on	a	Split	Point.	Not	much	to	it.	Note	that	the	right	group	contains	all	rows	with	a	value	at	the	index	above	or	equal	to	the	split	value.	Evaluating	All	Splits	With	the	Gini	function	above	and	the	test	split	function	we	now	have	everything	we	need	to	evaluate	splits.	Given	a	dataset,	we	must	check	every	value	on
each	attribute	as	a	candidate	split,	evaluate	the	cost	of	the	split	and	find	the	best	possible	split	we	could	make.	Once	the	best	split	is	found,	we	can	use	it	as	a	node	in	our	decision	tree.	11.2.	Tutorial	96	This	is	an	exhaustive	and	greedy	algorithm.	We	will	use	a	dictionary	to	represent	a	node	in	the	decision	tree	as	we	can	store	data	by	name.	When
selecting	the	best	split	and	using	it	as	a	new	node	for	the	tree	we	will	store	the	index	of	the	chosen	attribute,	the	value	of	that	attribute	by	which	to	split	and	the	two	groups	of	data	split	by	the	chosen	split	point.	Each	group	of	data	is	its	own	small	dataset	of	just	those	rows	assigned	to	the	left	or	right	group	by	the	splitting	process.	You	can	imagine
how	we	might	split	each	group	again,	recursively	as	we	build	out	our	decision	tree.	Below	is	a	function	named	get	split()	that	implements	this	procedure.	You	can	see	that	it	iterates	over	each	attribute	(except	the	class	value)	and	then	each	value	for	that	attribute,	splitting	and	evaluating	splits	as	it	goes.	The	best	split	is	recorded	and	then	returned
after	all	checks	are	complete.	#	Select	the	best	split	point	for	a	dataset	def	get_split(dataset):	class_values	=	list(set(row[-1]	for	row	in	dataset))	b_index,	b_value,	b_score,	b_groups	=	999,	999,	999,	None	for	index	in	range(len(dataset[0])-1):	for	row	in	dataset:	groups	=	test_split(index,	row[index],	dataset)	gini	=	gini_index(groups,	class_values)	if
gini	<	b_score:	b_index,	b_value,	b_score,	b_groups	=	index,	row[index],	gini,	groups	return	{'index':b_index,	'value':b_value,	'groups':b_groups}	Listing	11.5:	Function	To	Find	the	Best	Split	Point	in	a	Dataset.	We	can	contrive	a	small	dataset	to	test	out	this	function	and	our	whole	dataset	splitting	process.	X1	X2	2.771244718	1.784783929
1.728571309	1.169761413	3.678319846	2.81281357	3.961043357	2.61995032	2.999208922	2.209014212	7.497545867	3.162953546	9.00220326	3.339047188	7.444542326	0.476683375	10.12493903	3.234550982	6.642287351	3.319983761	Y	0	0	0	0	0	1	1	1	1	1	Listing	11.6:	Small	Contrived	Dataset	For	Testing	CART.	We	can	plot	this	dataset	using
separate	colors	for	each	class.	You	can	see	that	it	would	not	be	difficult	to	manually	pick	a	value	of	X1	(x-axis	on	the	plot)	to	split	this	dataset.	11.2.	Tutorial	97	Figure	11.1:	Plot	of	Small	Contrived	Dataset	for	Testing	CART.	The	example	below	puts	all	of	this	together.	#	Example	of	getting	the	best	split	#	Split	a	dataset	based	on	an	attribute	and	an
attribute	value	def	test_split(index,	value,	dataset):	left,	right	=	list(),	list()	for	row	in	dataset:	if	row[index]	<	value:	left.append(row)	else:	right.append(row)	return	left,	right	#	Calculate	the	Gini	index	for	a	split	dataset	def	gini_index(groups,	classes):	#	count	all	samples	at	split	point	n_instances	=	float(sum([len(group)	for	group	in	groups]))	#	sum
weighted	Gini	index	for	each	group	gini	=	0.0	for	group	in	groups:	size	=	float(len(group))	#	avoid	divide	by	zero	if	size	==	0:	continue	score	=	0.0	#	score	the	group	based	on	the	score	for	each	class	for	class_val	in	classes:	p	=	[row[-1]	for	row	in	group].count(class_val)	/	size	score	+=	p	*	p	#	weight	the	group	score	by	its	relative	size	gini	+=	(1.0	-
score)	*	(size	/	n_instances)	return	gini	#	Select	the	best	split	point	for	a	dataset	11.2.	Tutorial	98	def	get_split(dataset):	class_values	=	list(set(row[-1]	for	row	in	dataset))	b_index,	b_value,	b_score,	b_groups	=	999,	999,	999,	None	for	index	in	range(len(dataset[0])-1):	for	row	in	dataset:	groups	=	test_split(index,	row[index],	dataset)	gini	=
gini_index(groups,	class_values)	print('X%d	<	%.3f	Gini=%.3f'	%	((index+1),	row[index],	gini))	if	gini	<	b_score:	b_index,	b_value,	b_score,	b_groups	=	index,	row[index],	gini,	groups	return	{'index':b_index,	'value':b_value,	'groups':b_groups}	#	Test	getting	the	best	split	dataset	=	[[2.771244718,1.784783929,0],	[1.728571309,1.169761413,0],
[3.678319846,2.81281357,0],	[3.961043357,2.61995032,0],	[2.999208922,2.209014212,0],	[7.497545867,3.162953546,1],	[9.00220326,3.339047188,1],	[7.444542326,0.476683375,1],	[10.12493903,3.234550982,1],	[6.642287351,3.319983761,1]]	split	=	get_split(dataset)	print('Split:	[X%d	<	%.3f]'	%	((split['index']+1),	split['value']))	Listing	11.7:
Example	of	Calculating	The	Best	Split	on	a	Contrived	Dataset.	The	get	split()	function	was	modified	to	print	out	each	split	point	and	it’s	Gini	index	as	it	was	evaluated.	Running	the	example	prints	all	of	the	Gini	scores	and	then	prints	the	score	of	best	split	in	the	dataset	of	X1	<	6.642	with	a	Gini	Index	of	0.0	or	a	perfect	split.	X1	<	2.771	Gini=0.444	X1
<	1.729	Gini=0.500	X1	<	3.678	Gini=0.286	X1	<	3.961	Gini=0.167	X1	<	2.999	Gini=0.375	X1	<	7.498	Gini=0.286	X1	<	9.002	Gini=0.375	X1	<	7.445	Gini=0.167	X1	<	10.125	Gini=0.444	X1	<	6.642	Gini=0.000	X2	<	1.785	Gini=0.500	X2	<	1.170	Gini=0.444	X2	<	2.813	Gini=0.320	X2	<	2.620	Gini=0.417	X2	<	2.209	Gini=0.476	X2	<	3.163
Gini=0.167	X2	<	3.339	Gini=0.444	X2	<	0.477	Gini=0.500	X2	<	3.235	Gini=0.286	X2	<	3.320	Gini=0.375	Split:	[X1	<	6.642]	Listing	11.8:	Example	Output	of	Fining	the	Best	Split.	11.2.	Tutorial	99	Now	that	we	know	how	to	find	the	best	split	points	in	a	dataset	or	list	of	rows,	let’s	see	how	we	can	use	it	to	build	out	a	decision	tree.	11.2.3	Build	a	Tree
Creating	the	root	node	of	the	tree	is	easy.	We	call	the	above	get	split()	function	using	the	entire	dataset.	Adding	more	nodes	to	our	tree	is	more	interesting.	Building	a	tree	may	be	divided	into	3	main	parts:	1.	Terminal	Nodes.	2.	Recursive	Splitting.	3.	Building	a	Tree.	Terminal	Nodes	We	need	to	decide	when	to	stop	growing	a	tree.	We	can	do	that
using	the	depth	and	the	number	of	rows	that	the	node	is	responsible	for	in	the	training	dataset.	ˆ	Maximum	Tree	Depth.	This	is	the	maximum	number	of	nodes	from	the	root	node	of	the	tree.	Once	a	maximum	depth	of	the	tree	is	met,	we	must	stop	adding	new	nodes.	Deeper	trees	are	more	complex	and	are	more	likely	to	overfit	the	training	data.	ˆ
Minimum	Node	Records.	This	is	the	minimum	number	of	training	patterns	that	a	given	node	is	responsible	for.	Once	at	or	below	this	minimum,	we	must	stop	splitting	and	adding	new	nodes.	Nodes	that	account	for	too	few	training	patterns	are	expected	to	be	too	specific	and	are	likely	to	overfit	the	training	data.	These	two	approaches	will	be	user-
specified	arguments	to	our	tree	building	procedure.	There	is	one	more	condition;	it	is	possible	to	choose	a	split	in	which	all	rows	belong	to	one	group.	In	this	case,	we	will	be	unable	to	continue	splitting	and	adding	child	nodes	as	we	will	have	no	records	to	split	on	one	side	or	another.	Now	we	have	some	ideas	of	when	to	stop	growing	the	tree.	When
we	do	stop	growing	at	a	given	point,	that	node	is	called	a	terminal	node	and	is	used	to	make	a	final	prediction.	This	is	done	by	taking	the	group	of	rows	assigned	to	that	node	and	selecting	the	most	common	class	value	in	the	group.	This	will	be	used	to	make	predictions.	Below	is	a	function	named	to	terminal()	that	will	select	a	class	value	for	a	group	of
rows.	It	returns	the	most	common	output	value	in	a	list	of	rows.	#	Create	a	terminal	node	value	def	to_terminal(group):	outcomes	=	[row[-1]	for	row	in	group]	return	max(set(outcomes),	key=outcomes.count)	Listing	11.9:	Function	To	Create	a	Terminal	Node.	11.2.	Tutorial	100	Recursive	Splitting	We	know	how	and	when	to	create	terminal	nodes;	now
we	can	build	our	tree.	Building	a	decision	tree	involves	calling	the	above	developed	get	split()	function	over	and	over	again	on	the	groups	created	for	each	node.	New	nodes	added	to	an	existing	node	are	called	child	nodes.	A	node	may	have	zero	children	(a	terminal	node),	one	child	(one	side	makes	a	prediction	directly)	or	two	child	nodes.	We	will
refer	to	the	child	nodes	as	left	and	right	in	the	dictionary	representation	of	a	given	node.	Once	a	node	is	created,	we	can	create	child	nodes	recursively	on	each	group	of	data	from	the	split	by	calling	the	same	function	again.	Below	is	a	function	that	implements	this	recursive	procedure.	It	takes	a	node	as	an	argument	as	well	as	the	maximum	depth,
minimum	number	of	patterns	in	a	node	and	the	current	depth	of	a	node.	You	can	imagine	how	this	might	be	first	called	passing	in	the	root	node	and	the	depth	of	1.	This	function	is	best	explained	in	steps:	1.	Firstly,	the	two	groups	of	data	split	by	the	node	are	extracted	for	use	and	deleted	from	the	node.	As	we	work	on	these	groups	the	node	no	longer
requires	access	to	these	data.	2.	Next,	we	check	if	either	left	or	right	group	of	rows	is	empty	and	if	so	we	create	a	terminal	node	using	what	records	we	do	have.	3.	We	then	check	if	we	have	reached	our	maximum	depth	and	if	so	we	create	a	terminal	node.	4.	We	then	process	the	left	child,	creating	a	terminal	node	if	the	group	of	rows	is	too	small,
otherwise	creating	and	adding	the	left	node	in	a	depth	first	fashion	until	the	bottom	of	the	tree	is	reached	on	this	branch.	5.	The	right	side	is	then	processed	in	the	same	manner,	as	we	rise	back	up	the	constructed	tree	to	the	root.	#	Create	child	splits	for	a	node	or	make	terminal	def	split(node,	max_depth,	min_size,	depth):	left,	right	=	node['groups']
del(node['groups'])	#	check	for	a	no	split	if	not	left	or	not	right:	node['left']	=	node['right']	=	to_terminal(left	+	right)	return	#	check	for	max	depth	if	depth	>=	max_depth:	node['left'],	node['right']	=	to_terminal(left),	to_terminal(right)	return	#	process	left	child	if	len(left)	epoch=0,	lrate=0.300,	error=43.270	>epoch=1,	lrate=0.270,	error=30.403
>epoch=2,	lrate=0.240,	error=27.146	>epoch=3,	lrate=0.210,	error=26.301	>epoch=4,	lrate=0.180,	error=25.537	>epoch=5,	lrate=0.150,	error=24.789	>epoch=6,	lrate=0.120,	error=24.058	>epoch=7,	lrate=0.090,	error=23.346	>epoch=8,	lrate=0.060,	error=22.654	>epoch=9,	lrate=0.030,	error=21.982	Codebooks:	[[2.432316086217663,
2.839821664184211,	0],	[7.319592257892681,	1.97013382654341,	1]]	Listing	14.12:	Example	Output	of	Training	Codebook	Vectors.	Now	that	we	know	how	to	train	a	set	of	codebook	vectors,	let’s	see	how	we	can	use	this	algorithm	on	a	real	dataset.	14.2.	Tutorial	14.2.4	150	Ionosphere	Case	Study	In	this	section,	we	will	apply	the	Learning	Vector
Quantization	algorithm	to	the	Ionosphere	dataset.	The	first	step	is	to	load	the	dataset	and	convert	the	loaded	data	to	numbers	that	we	can	use	with	the	Euclidean	distance	calculation.	For	this	we	will	use	the	helper	function	load	csv()	to	load	the	file,	str	column	to	float()	to	convert	string	numbers	to	floats	and	str	column	to	int()	to	convert	the	class
column	to	integer	values.	We	will	evaluate	the	algorithm	using	k-fold	cross-validation	with	5	folds.	This	means	that	351	=	70.2	or	just	over	70	records	will	be	in	each	fold.	We	will	use	the	helper	functions	5	evaluate	algorithm()	to	evaluate	the	algorithm	with	cross-validation	and	accuracy	metric()	to	calculate	the	accuracy	of	predictions.	The	complete
example	is	listed	below.	#	LVQ	for	the	Ionosphere	Dataset	from	random	import	seed	from	random	import	randrange	from	csv	import	reader	from	math	import	sqrt	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return
dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Convert	string	column	to	integer	def	str_column_to_int(dataset,	column):	class_values	=	[row[column]	for	row	in	dataset]	unique	=	set(class_values)	lookup	=	dict()	for	i,	value	in	enumerate(unique):
lookup[value]	=	i	for	row	in	dataset:	row[column]	=	lookup[row[column]]	return	lookup	#	Split	a	dataset	into	k	folds	def	cross_validation_split(dataset,	n_folds):	dataset_split	=	list()	dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/	n_folds)	for	_	in	range(n_folds):	fold	=	list()	while	len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))	14.2.	Tutorial	dataset_split.append(fold)	return	dataset_split	#	Calculate	accuracy	percentage	def	accuracy_metric(actual,	predicted):	correct	=	0	for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/	float(len(actual))	*	100.0	#	Evaluate	an	algorithm	using	a	cross	validation	split	def
evaluate_algorithm(dataset,	algorithm,	n_folds,	*args):	folds	=	cross_validation_split(dataset,	n_folds)	scores	=	list()	for	fold	in	folds:	train_set	=	list(folds)	train_set.remove(fold)	train_set	=	sum(train_set,	[])	test_set	=	list()	for	row	in	fold:	row_copy	=	list(row)	test_set.append(row_copy)	row_copy[-1]	=	None	predicted	=	algorithm(train_set,	test_set,
*args)	actual	=	[row[-1]	for	row	in	fold]	accuracy	=	accuracy_metric(actual,	predicted)	scores.append(accuracy)	return	scores	#	calculate	the	Euclidean	distance	between	two	vectors	def	euclidean_distance(row1,	row2):	distance	=	0.0	for	i	in	range(len(row1)-1):	distance	+=	(row1[i]	-	row2[i])**2	return	sqrt(distance)	#	Locate	the	best	matching	unit
def	get_best_matching_unit(codebooks,	test_row):	distances	=	list()	for	codebook	in	codebooks:	dist	=	euclidean_distance(codebook,	test_row)	distances.append((codebook,	dist))	distances.sort(key=lambda	tup:	tup[1])	return	distances[0][0]	#	Make	a	prediction	with	codebook	vectors	def	predict(codebooks,	test_row):	bmu	=
get_best_matching_unit(codebooks,	test_row)	return	bmu[-1]	#	Create	a	random	codebook	vector	def	random_codebook(train):	n_records	=	len(train)	n_features	=	len(train[0])	codebook	=	[train[randrange(n_records)][i]	for	i	in	range(n_features)]	151	14.2.	Tutorial	152	return	codebook	#	Train	a	set	of	codebook	vectors	def	train_codebooks(train,
n_codebooks,	lrate,	epochs):	codebooks	=	[random_codebook(train)	for	i	in	range(n_codebooks)]	for	epoch	in	range(epochs):	rate	=	lrate	*	(1.0-(epoch/float(epochs)))	for	row	in	train:	bmu	=	get_best_matching_unit(codebooks,	row)	for	i	in	range(len(row)-1):	error	=	row[i]	-	bmu[i]	if	bmu[-1]	==	row[-1]:	bmu[i]	+=	rate	*	error	else:	bmu[i]	-=	rate	*
error	return	codebooks	#	LVQ	Algorithm	def	learning_vector_quantization(train,	test,	n_codebooks,	lrate,	epochs):	codebooks	=	train_codebooks(train,	n_codebooks,	lrate,	epochs)	predictions	=	list()	for	row	in	test:	output	=	predict(codebooks,	row)	predictions.append(output)	return(predictions)	#	Test	LVQ	on	Ionosphere	dataset	seed(1)	#	load	and
prepare	data	filename	=	'ionosphere.csv'	dataset	=	load_csv(filename)	for	i	in	range(len(dataset[0])-1):	str_column_to_float(dataset,	i)	#	convert	class	column	to	integers	str_column_to_int(dataset,	len(dataset[0])-1)	#	evaluate	algorithm	n_folds	=	5	learn_rate	=	0.3	n_epochs	=	50	n_codebooks	=	20	scores	=	evaluate_algorithm(dataset,
learning_vector_quantization,	n_folds,	n_codebooks,	learn_rate,	n_epochs)	print('Scores:	%s'	%	scores)	print('Mean	Accuracy:	%.3f%%'	%	(sum(scores)/float(len(scores))))	Listing	14.13:	Example	of	LVQ	on	the	Ionosphere	Dataset.	Running	this	example	prints	the	classification	accuracy	on	each	fold	and	the	mean	classification	accuracy	across	all	folds.
We	can	see	that	the	accuracy	of	about	87%	is	better	than	the	baseline	of	64%.	We	can	also	see	that	our	library	of	20	codebook	vectors	is	far	fewer	than	holding	the	entire	training	dataset.	Scores:	[88.57142857142857,	90.0,	88.57142857142857,	88.57142857142857,	80.0]	Mean	Accuracy:	87.143%	Listing	14.14:	Example	Output	of	LVQ	on	the
Ionosphere	Dataset.	14.3.	Extensions	14.3	153	Extensions	This	section	lists	extensions	to	the	tutorial	that	you	may	wish	to	explore.	ˆ	Tune	Parameters.	The	parameters	in	the	above	example	were	not	tuned;	try	different	values	to	improve	the	classification	accuracy.	ˆ	Different	Distance	Measures.	Experiment	with	different	distance	measures	such	as
Manhattan	distance	and	Minkowski	distance.	ˆ	Multiple-Pass	LVQ.	The	codebook	vectors	may	be	updated	by	multiple	training	runs.	Experiment	by	training	with	large	learning	rates	followed	by	a	large	number	of	epochs	with	smaller	learning	rates	to	fine	tune	the	codebooks.	ˆ	Update	More	BMUs.	Experiment	with	selecting	more	than	one	BMU	when
training	and	pushing	and	pulling	them	away	from	the	training	data.	ˆ	More	Problems.	Apply	LVQ	to	more	classification	problems	on	the	UCI	Machine	Learning	Repository.	14.4	Review	In	this	tutorial,	you	discovered	how	to	implement	the	learning	vector	quantization	algorithm	from	scratch	in	Python.	Specifically,	you	learned:	ˆ	How	to	calculate	the
distance	between	patterns	and	locate	the	best	matching	unit.	ˆ	How	to	train	a	set	of	codebook	vectors	to	best	summarize	the	training	dataset.	ˆ	How	to	apply	the	learning	vector	quantization	algorithm	to	a	real	predictive	modeling	problem.	14.4.1	Further	Reading	ˆ	Chapter	6.	Learning	Vector	Quantization,	page	245,	Self-Organizing	Maps,	2000
14.4.2	Next	In	the	next	tutorial,	you	will	discover	how	to	implement	and	apply	the	Backpropagation	algorithm	for	classification.	Chapter	15	Backpropagation	The	backpropagation	algorithm	is	the	classical	feedforward	artificial	neural	network.	It	is	the	technique	still	used	to	train	large	deep	learning	networks.	In	this	tutorial,	you	will	discover	how	to
implement	the	backpropagation	algorithm	from	scratch	with	Python.	After	completing	this	tutorial,	you	will	know:	ˆ	How	to	forward-propagate	an	input	to	calculate	an	output.	ˆ	How	to	backpropagate	error	and	train	a	network.	ˆ	How	to	apply	the	backpropagation	algorithm	to	a	real-world	predictive	modeling	problem.	Let’s	get	started.	15.1
Description	This	section	provides	a	brief	introduction	to	the	Backpropagation	Algorithm	and	the	Wheat	Seeds	dataset	that	we	will	be	using	in	this	tutorial.	15.1.1	Backpropagation	Algorithm	The	Backpropagation	algorithm	is	a	supervised	learning	method	for	multilayer	feedforward	networks	from	the	field	of	Artificial	Neural	Networks.	Feedforward
neural	networks	are	inspired	by	the	information	processing	of	one	or	more	neural	cells,	called	a	neuron.	A	neuron	accepts	input	signals	via	its	dendrites,	which	pass	the	electrical	signal	down	to	the	cell	body.	The	axon	carries	the	signal	out	to	synapses,	which	are	the	connections	of	a	cell’s	axon	to	other	cell’s	dendrites.	The	principle	of	the
backpropagation	approach	is	to	model	a	given	function	by	modifying	internal	weightings	of	input	signals	to	produce	an	expected	output	signal.	The	system	is	trained	using	a	supervised	learning	method	where	the	error	between	the	system’s	output	and	a	known	expected	output	is	presented	to	the	system	and	used	to	modify	its	internal	state.
Technically,	the	backpropagation	algorithm	is	a	method	for	training	the	weights	in	a	multilayer	feedforward	neural	network.	As	such,	it	requires	a	network	structure	to	be	defined	of	one	or	more	layers	where	one	layer	is	fully	connected	to	the	next	layer.	A	standard	network	structure	154	15.2.	Tutorial	155	is	one	input	layer,	one	hidden	layer,	and	one
output	layer.	Backpropagation	can	be	used	for	both	classification	and	regression	problems,	but	we	will	focus	on	classification	in	this	tutorial.	In	classification	problems,	best	results	are	achieved	when	the	network	has	one	neuron	in	the	output	layer	for	each	class	value.	For	example,	a	2-class	or	binary	classification	problem	with	the	class	values	of	A
and	B.	These	expected	outputs	would	have	to	be	transformed	into	binary	vectors	with	one	column	for	each	class	value.	Such	as	[1,	0]	and	[0,	1]	for	A	and	B	respectively.	This	is	called	a	one	hot	encoding.	15.1.2	Wheat	Seeds	Dataset	In	this	tutorial	we	will	use	the	Wheat	Seeds	Dataset.	This	dataset	involves	the	prediction	of	the	species	of	wheat	seeds.
The	baseline	performance	on	the	problem	is	approximately	28%.	You	can	learn	more	about	it	in	Appendix	A,	Section	A.10.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the	filename	seeds	dataset.csv.	The	dataset	is	in	tab-separated	format,	so	you	must	convert	it	to	CSV	using	a	text	editor	or	a	spreadsheet	program.	15.2
Tutorial	This	tutorial	is	broken	down	into	6	parts:	1.	Initialize	Network.	2.	Forward-Propagate.	3.	Backpropagate	Error.	4.	Train	Network.	5.	Predict.	6.	Wheat	Seeds	Case	Study.	These	steps	will	provide	the	foundation	that	you	need	to	implement	the	backpropagation	algorithm	from	scratch	and	apply	it	to	your	own	predictive	modeling	problems.
15.2.1	Initialize	Network	Let’s	start	with	something	easy:	the	creation	of	a	new	network	ready	for	training.	Each	neuron	has	a	set	of	weights	that	need	to	be	maintained.	One	weight	for	each	input	connection	and	an	additional	weight	for	the	bias.	We	will	need	to	store	additional	properties	for	a	neuron	during	training,	therefore	we	will	use	a	dictionary
to	represent	each	neuron	and	store	properties	by	names	such	as	weights	for	the	weights.	A	network	is	organized	into	layers.	The	input	layer	is	really	just	a	row	from	our	training	dataset.	The	first	real	layer	is	the	hidden	layer.	This	is	followed	by	the	output	layer	that	has	one	neuron	for	each	class	value.	We	will	organize	layers	as	arrays	of	dictionaries
and	treat	the	whole	network	as	an	array	of	layers.	It	is	good	practice	to	initialize	the	network	weights	to	small	random	numbers.	In	this	case,	will	we	use	random	numbers	in	the	range	of	0	to	1.	15.2.	Tutorial	156	Below	is	a	function	named	initialize	network()	that	creates	a	new	neural	network	ready	for	training.	It	accepts	three	parameters:	the
number	of	inputs,	the	number	of	neurons	to	have	in	the	hidden	layer	and	the	number	of	outputs.	You	can	see	that	for	the	hidden	layer	we	create	n	hidden	neurons	and	each	neuron	in	the	hidden	layer	has	n	inputs	+	1	weights,	one	for	each	input	column	in	a	dataset	and	an	additional	one	for	the	bias.	You	can	also	see	that	the	output	layer	that	connects
to	the	hidden	layer	has	n	outputs	neurons,	each	with	n	hidden	+	1	weights.	This	means	that	each	neuron	in	the	output	layer	connects	to	(has	a	weight	for)	each	neuron	in	the	hidden	layer.	#	Initialize	a	network	def	initialize_network(n_inputs,	n_hidden,	n_outputs):	network	=	list()	hidden_layer	=	[{'weights':[random()	for	i	in	range(n_inputs	+	1)]}	for	i
in	range(n_hidden)]	network.append(hidden_layer)	output_layer	=	[{'weights':[random()	for	i	in	range(n_hidden	+	1)]}	for	i	in	range(n_outputs)]	network.append(output_layer)	return	network	Listing	15.1:	Function	To	Initialize	a	Multilayer	Perceptron	Network.	Let’s	test	out	this	function.	Below	is	a	complete	example	that	creates	a	small	network.	#
Example	of	initializing	a	network	from	random	import	seed	from	random	import	random	#	Initialize	a	network	def	initialize_network(n_inputs,	n_hidden,	n_outputs):	network	=	list()	hidden_layer	=	[{'weights':[random()	for	i	in	range(n_inputs	+	1)]}	for	i	in	range(n_hidden)]	network.append(hidden_layer)	output_layer	=	[{'weights':[random()	for	i	in
range(n_hidden	+	1)]}	for	i	in	range(n_outputs)]	network.append(output_layer)	return	network	#	Test	initializing	a	network	seed(1)	network	=	initialize_network(2,	1,	2)	for	layer	in	network:	print(layer)	Listing	15.2:	Example	of	Initializing	a	Multilayer	Perceptron	Network.	Running	the	example,	you	can	see	that	the	code	prints	out	each	layer	one	by
one.	You	can	see	the	hidden	layer	has	one	neuron	with	2	input	weights	plus	the	bias.	The	output	layer	has	2	neurons,	each	with	1	weight	plus	the	bias.	[{'weights':	[0.13436424411240122,	0.8474337369372327,	0.763774618976614]}]	[{'weights':	[0.2550690257394217,	0.49543508709194095]},	{'weights':	[0.4494910647887381,
0.651592972722763]}]	Listing	15.3:	Sample	Output	from	Initializing	a	Network.	15.2.	Tutorial	157	Now	that	we	know	how	to	create	and	initialized	a	network,	let’s	see	how	we	can	use	it	to	calculate	an	output.	15.2.2	Forward-Propagate	We	can	calculate	an	output	from	a	neural	network	by	propagating	an	input	signal	through	each	layer	until	the
output	layer	outputs	its	values.	We	call	this	forward-propagation.	It	is	the	technique	we	will	need	to	generate	predictions	during	training	that	will	need	to	be	corrected,	and	it	is	the	method	we	will	need	after	the	network	is	trained	to	make	predictions	on	new	data.	We	can	break	forward-propagation	down	into	three	parts:	1.	Neuron	Activation.	2.
Neuron	Transfer.	3.	Forward-Propagation.	Neuron	Activation	The	first	step	is	to	calculate	the	activation	of	one	neuron	given	an	input.	The	input	could	be	a	row	from	our	training	dataset,	as	in	the	case	of	the	hidden	layer.	It	may	also	be	the	outputs	from	each	neuron	in	the	hidden	layer,	in	the	case	of	the	output	layer.	Neuron	activation	is	calculated	as
the	weighted	sum	of	the	inputs.	Much	like	linear	regression.	activation	=	bias	+	n	X	weighti	×	inputi	(15.1)	i=1	Where	weight	is	a	network	weight,	input	is	an	input	value,	i	is	the	index	of	a	weight	or	an	input	and	bias	is	a	special	weight	that	has	no	input	to	multiply	with	(or	you	can	think	of	the	input	as	always	being	1.0).	Below	is	an	implementation	of
this	in	a	function	named	activate().	You	can	see	that	the	function	assumes	that	the	bias	is	the	last	weight	in	the	list	of	weights.	This	helps	here	and	later	to	make	the	code	easier	to	read.	#	Calculate	neuron	activation	for	an	input	def	activate(weights,	inputs):	activation	=	weights[-1]	for	i	in	range(len(weights)-1):	activation	+=	weights[i]	*	inputs[i]
return	activation	Listing	15.4:	Function	To	Activate	a	Neuron.	Now,	let’s	see	how	to	use	the	neuron	activation.	Neuron	Transfer	Once	a	neuron	is	activated,	we	need	to	transfer	the	activation	to	see	what	the	neuron	output	actually	is.	Different	transfer	functions	can	be	used.	It	is	traditional	to	use	the	sigmoid	activation	function,	but	you	can	also	use
the	tanh	(hyperbolic	tangent)	function	to	transfer	outputs.	More	recently,	the	rectifier	transfer	function	has	been	popular	with	large	deep	learning	networks.	15.2.	Tutorial	158	The	sigmoid	activation	function	looks	like	an	S	shape:	it’s	also	called	the	logistic	function.	It	can	take	any	input	value	and	produce	a	number	between	0	and	1	on	an	S-curve.	It
is	also	a	function	of	which	we	can	easily	calculate	the	derivative	(slope)	that	we	will	need	later	when	backpropagating	error.	We	can	transfer	an	activation	function	using	the	sigmoid	function	as	follows:	output	=	1	(15.2)	1+	Where	e	is	the	base	of	the	natural	logarithms	(Euler’s	number).	Below	is	a	function	named	transfer()	that	implements	the
sigmoid	equation.	e−activation	#	Transfer	neuron	activation	def	transfer(activation):	return	1.0	/	(1.0	+	exp(-activation))	Listing	15.5:	Function	To	Transfer	a	Neuron’s	Activation.	Now	that	we	have	the	pieces,	let’s	see	how	they	are	used.	Forward-Propagation	Forward-propagating	an	input	is	straightforward.	We	work	through	each	layer	of	our
network	calculating	the	outputs	for	each	neuron.	All	of	the	outputs	from	one	layer	become	inputs	to	the	neurons	on	the	next	layer.	Below	is	a	function	named	forward	propagate()	that	implements	the	forward-propagation	for	a	row	of	data	from	our	dataset	with	our	neural	network.	You	can	see	that	a	neuron’s	output	value	is	stored	in	the	neuron	with
the	name	output.	You	can	also	see	that	we	collect	the	outputs	for	a	layer	in	an	array	named	new	inputs	that	becomes	the	array	inputs	and	is	used	as	inputs	for	the	following	layer.	The	function	returns	the	outputs	from	the	last	layer	also	called	the	output	layer.	#	Forward-propagate	input	to	a	network	output	def	forward_propagate(network,	row):
inputs	=	row	for	layer	in	network:	new_inputs	=	[]	for	neuron	in	layer:	activation	=	activate(neuron['weights'],	inputs)	neuron['output']	=	transfer(activation)	new_inputs.append(neuron['output'])	inputs	=	new_inputs	return	inputs	Listing	15.6:	Function	To	Forward-Propagate	Input	Through	a	Network.	Let’s	put	all	of	these	pieces	together	and	test	out
the	forward-propagation	of	our	network.	We	define	our	network	inline	with	one	hidden	neuron	that	expects	2	input	values	and	an	output	layer	with	two	neurons.	#	Example	of	forward	propagating	input	from	math	import	exp	#	Calculate	neuron	activation	for	an	input	def	activate(weights,	inputs):	activation	=	weights[-1]	15.2.	Tutorial	159	for	i	in
range(len(weights)-1):	activation	+=	weights[i]	*	inputs[i]	return	activation	#	Transfer	neuron	activation	def	transfer(activation):	return	1.0	/	(1.0	+	exp(-activation))	#	Forward	propagate	input	to	a	network	output	def	forward_propagate(network,	row):	inputs	=	row	for	layer	in	network:	new_inputs	=	[]	for	neuron	in	layer:	activation	=
activate(neuron['weights'],	inputs)	neuron['output']	=	transfer(activation)	new_inputs.append(neuron['output'])	inputs	=	new_inputs	return	inputs	#	test	forward	propagation	network	=	[[{'weights':	[0.13436424411240122,	0.8474337369372327,	0.763774618976614]}],	[{'weights':	[0.2550690257394217,	0.49543508709194095]},	{'weights':
[0.4494910647887381,	0.651592972722763]}]]	row	=	[1,	0,	None]	output	=	forward_propagate(network,	row)	print(output)	Listing	15.7:	Example	of	Forward-Propagating	an	Input	Through	a	Network.	Running	the	example	propagates	the	input	pattern	[1,	0]	and	produces	an	output	value	that	is	printed.	Because	the	output	layer	has	two	neurons,	we
get	a	list	of	two	numbers	as	output.	The	actual	output	values	are	just	nonsense	for	now,	but	next,	we	will	start	to	learn	how	to	make	the	weights	in	the	neurons	more	useful.	[0.6629970129852887,	0.7253160725279748]	Listing	15.8:	Sample	Output	from	Forward-Propagate	Input	Through	a	Network.	15.2.3	Backpropagate	Error	The	backpropagation
algorithm	is	named	for	the	way	in	which	weights	are	trained.	Error	is	calculated	between	the	expected	outputs	and	the	outputs	forward-propagated	from	the	network.	These	errors	are	then	propagated	backward	through	the	network	from	the	output	layer	to	the	hidden	layer,	assigning	blame	for	the	error	and	updating	weights	as	they	go.	The	math	for
backpropagating	error	is	rooted	in	calculus,	but	we	will	remain	high	level	in	this	section	and	focus	on	what	is	calculated	and	how	rather	than	why	the	calculations	take	this	particular	form.	This	part	is	broken	down	into	two	sections.	1.	Transfer	Derivative.	2.	Error	Backpropagation.	15.2.	Tutorial	160	Transfer	Derivative	Given	an	output	value	from	a
neuron,	we	need	to	calculate	it’s	slope.	We	are	using	the	sigmoid	transfer	function,	the	derivative	of	which	can	be	calculated	as	follows:	derivative	=	output	×	(1.0	−	output)	(15.3)	Below	is	a	function	named	transfer	derivative()	that	implements	this	equation.	#	Calculate	the	derivative	of	an	neuron	output	def	transfer_derivative(output):	return	output
*	(1.0	-	output)	Listing	15.9:	Function	To	Calculate	the	Derivative	of	a	Neuron’s	Output.	Now,	let’s	see	how	this	can	be	used.	Error	Backpropagation	The	first	step	is	to	calculate	the	error	for	each	output	neuron;	this	will	give	us	our	error	signal	(input)	to	propagate	backwards	through	the	network.	The	error	for	a	given	neuron	can	be	calculated	as
follows:	error	=	(expected	−	output)	×	transfer	derivative(output)	(15.4)	Where	expected	is	the	expected	output	value	for	the	neuron,	output	is	the	output	value	for	the	neuron	and	transfer	derivative()	calculates	the	slope	of	the	neuron’s	output	value,	as	shown	above.	This	error	calculation	is	used	for	neurons	in	the	output	layer.	The	expected	value	is
the	class	value	itself.	In	the	hidden	layer,	things	are	a	little	more	complicated.	The	error	signal	for	a	neuron	in	the	hidden	layer	is	calculated	as	the	weighted	error	of	each	neuron	in	the	output	layer.	Think	of	the	error	traveling	back	along	the	weights	of	the	output	layer	to	the	neurons	in	the	hidden	layer.	The	backpropagated	error	signal	is
accumulated	and	then	used	to	determine	the	error	for	the	neuron	in	the	hidden	layer,	as	follows:	error	=	(weightk	×	errorj	)	×	transfer	derivative(output)	(15.5)	Where	error	j	is	the	error	signal	from	the	jth	neuron	in	the	output	layer,	weight	k	is	the	weight	that	connects	the	kth	neuron	to	the	current	neuron	and	output	is	the	output	for	the	current



neuron.	Below	is	a	function	named	backward	propagate	error()	that	implements	this	procedure.	You	can	see	that	the	error	signal	calculated	for	each	neuron	is	stored	with	the	name	delta.	You	can	see	that	the	layers	of	the	network	are	iterated	in	reverse	order,	starting	at	the	output	and	working	backwards.	This	ensures	that	the	neurons	in	the	output
layer	have	delta	values	calculated	first	that	neurons	in	the	hidden	layer	can	use	in	the	subsequent	iteration.	I	chose	the	name	delta	to	reflect	the	change	the	error	implies	on	the	neuron	(e.g.	the	weight	delta).	You	can	see	that	the	error	signal	for	neurons	in	the	hidden	layer	is	accumulated	from	neurons	in	the	output	layer	where	the	hidden	neuron
number	j	is	also	the	index	of	the	neuron’s	weight	in	the	output	layer	neuron[’weights’][j].	#	Backpropagate	error	and	store	in	neurons	def	backward_propagate_error(network,	expected):	for	i	in	reversed(range(len(network))):	15.2.	Tutorial	161	layer	=	network[i]	errors	=	list()	if	i	!=	len(network)-1:	for	j	in	range(len(layer)):	error	=	0.0	for	neuron	in
network[i	+	1]:	error	+=	(neuron['weights'][j]	*	neuron['delta'])	errors.append(error)	else:	for	j	in	range(len(layer)):	neuron	=	layer[j]	errors.append(expected[j]	-	neuron['output'])	for	j	in	range(len(layer)):	neuron	=	layer[j]	neuron['delta']	=	errors[j]	*	transfer_derivative(neuron['output'])	Listing	15.10:	Function	To	Backpropagate	Error	Through	a
Network.	Let’s	put	all	of	the	pieces	together	and	see	how	it	works.	We	define	a	fixed	neural	network	with	output	values	and	backpropagate	an	expected	output	pattern.	The	complete	example	is	listed	below.	#	Example	of	backpropagating	error	#	Calculate	the	derivative	of	an	neuron	output	def	transfer_derivative(output):	return	output	*	(1.0	-	output)
#	Backpropagate	error	and	store	in	neurons	def	backward_propagate_error(network,	expected):	for	i	in	reversed(range(len(network))):	layer	=	network[i]	errors	=	list()	if	i	!=	len(network)-1:	for	j	in	range(len(layer)):	error	=	0.0	for	neuron	in	network[i	+	1]:	error	+=	(neuron['weights'][j]	*	neuron['delta'])	errors.append(error)	else:	for	j	in
range(len(layer)):	neuron	=	layer[j]	errors.append(expected[j]	-	neuron['output'])	for	j	in	range(len(layer)):	neuron	=	layer[j]	neuron['delta']	=	errors[j]	*	transfer_derivative(neuron['output'])	#	test	backpropagation	of	error	network	=	[[{'output':	0.7105668883115941,	'weights':	[0.13436424411240122,	0.8474337369372327,	0.763774618976614]}],
[{'output':	0.6213859615555266,	'weights':	[0.2550690257394217,	0.49543508709194095]},	{'output':	0.6573693455986976,	'weights':	[0.4494910647887381,	0.651592972722763]}]]	expected	=	[0,	1]	backward_propagate_error(network,	expected)	for	layer	in	network:	print(layer)	15.2.	Tutorial	162	Listing	15.11:	Example	of	Backpropagating
Error	Through	a	Network.	Running	the	example	prints	the	network	after	the	backpropagation	of	error	is	complete.	You	can	see	that	error	values	are	calculated	and	stored	in	the	neurons	for	the	output	layer	and	the	hidden	layer.	[{'output':	0.7105668883115941,	'weights':	[0.13436424411240122,	0.8474337369372327,	0.763774618976614],	'delta':
-0.0005348048046610517}]	[{'output':	0.6213859615555266,	'weights':	[0.2550690257394217,	0.49543508709194095],	'delta':	-0.14619064683582808},	{'output':	0.6573693455986976,	'weights':	[0.4494910647887381,	0.651592972722763],	'delta':	0.0771723774346327}]	Listing	15.12:	Sample	Output	from	Backpropagate	Error	Through	a
Network.	Now	let’s	use	the	backpropagation	of	error	to	train	the	network.	15.2.4	Train	Network	The	network	is	trained	using	stochastic	gradient	descent.	Gradient	descent	was	introduced	and	described	in	Section	8.1.2.	The	procedure	involves	multiple	iterations	of	exposing	a	training	dataset	to	the	network	and	for	each	row	of	data	forward-
propagating	the	inputs,	backpropagating	the	error	and	updating	the	network	weights.	This	part	is	broken	down	into	two	sections:	1.	Update	Weights.	2.	Train	Network.	Update	Weights	Once	errors	are	calculated	for	each	neuron	in	the	network	via	the	backpropagation	method	above,	they	can	be	used	to	update	weights.	Network	weights	are	updated
as	follows:	weight	=	weight	+	learning	rate	×	error	×	input	(15.6)	Where	weight	is	a	given	weight,	learning	rate	is	a	parameter	that	you	must	specify,	error	is	the	error	calculated	by	the	backpropagation	procedure	for	the	neuron	and	input	is	the	input	value	that	caused	the	error.	The	same	procedure	can	be	used	for	updating	the	bias	weight,	except
there	is	no	input	term,	or	input	is	the	fixed	value	of	1.0.	Learning	rate	controls	how	much	to	change	the	weight	to	correct	for	the	error.	For	example,	a	value	of	0.1	will	update	the	weight	10%	of	the	amount	that	it	possibly	could	be	updated.	Small	learning	rates	are	preferred	that	cause	slower	learning	over	a	large	number	of	training	iterations.	This
increases	the	likelihood	of	the	network	finding	a	good	set	of	weights	across	all	layers	rather	than	the	fastest	set	of	weights	that	minimize	error	(called	premature	convergence).	Below	is	a	function	named	update	weights()	that	updates	the	weights	for	a	network	given	an	input	row	of	data,	a	learning	rate	and	assume	that	a	forward	and	backward
propagation	have	already	been	performed.	Remember	that	the	input	for	the	output	layer	is	a	collection	of	outputs	from	the	hidden	layer.	15.2.	Tutorial	163	#	Update	network	weights	with	error	def	update_weights(network,	row,	l_rate):	for	i	in	range(len(network)):	inputs	=	row[:-1]	if	i	!=	0:	inputs	=	[neuron['output']	for	neuron	in	network[i	-	1]]	for
neuron	in	network[i]:	for	j	in	range(len(inputs)):	neuron['weights'][j]	+=	l_rate	*	neuron['delta']	*	inputs[j]	neuron['weights'][-1]	+=	l_rate	*	neuron['delta']	Listing	15.13:	Function	To	Update	Weights	in	a	Network.	Now	that	we	know	how	to	update	network	weights,	let’s	see	how	we	can	do	it	repeatedly.	Train	Network	As	mentioned,	the	network	is
updated	using	stochastic	gradient	descent.	This	involves	first	looping	for	a	fixed	number	of	epochs	and	within	each	epoch	updating	the	network	for	each	row	in	the	training	dataset.	Because	updates	are	made	for	each	training	pattern,	this	type	of	learning	is	called	online	learning.	If	errors	were	accumulated	across	an	epoch	before	updating	the
weights,	this	is	called	batch	learning	or	batch	gradient	descent.	Below	is	a	function	that	implements	the	training	of	an	already	initialized	neural	network	with	a	given	training	dataset,	learning	rate,	fixed	number	of	epochs	and	an	expected	number	of	output	values.	The	expected	number	of	output	values	is	used	to	transform	class	values	in	the	training
data	into	a	one	hot	encoding.	That	is	a	binary	vector	with	one	column	for	each	class	value	to	match	the	output	of	the	network.	This	is	required	to	calculate	the	error	for	the	output	layer.	You	can	also	see	that	the	sum	squared	error	between	the	expected	output	and	the	network	output	is	accumulated	each	epoch	and	printed.	This	is	helpful	to	create	a
trace	of	how	much	the	network	is	learning	and	improving	each	epoch.	#	Train	a	network	for	a	fixed	number	of	epochs	def	train_network(network,	train,	l_rate,	n_epoch,	n_outputs):	for	epoch	in	range(n_epoch):	sum_error	=	0	for	row	in	train:	outputs	=	forward_propagate(network,	row)	expected	=	[0	for	i	in	range(n_outputs)]	expected[row[-1]]	=	1
sum_error	+=	sum([(expected[i]-outputs[i])**2	for	i	in	range(len(expected))])	backward_propagate_error(network,	expected)	update_weights(network,	row,	l_rate)	print('>epoch=%d,	lrate=%.3f,	error=%.3f'	%	(epoch,	l_rate,	sum_error))	Listing	15.14:	Function	To	Train	a	Neural	Network	on	a	Dataset.	We	now	have	all	of	the	pieces	to	train	the
network.	We	can	put	together	an	example	that	includes	everything	we’ve	seen	so	far	including	network	initialization	and	train	a	network	on	a	small	dataset.	Below	is	a	small	contrived	dataset	that	we	can	use	to	test	out	training	our	neural	network.	X1	X2	Y	15.2.	Tutorial	2.7810836	2.550537003	1.465489372	2.362125076	3.396561688	4.400293529
1.38807019	1.850220317	3.06407232	3.005305973	7.627531214	2.759262235	5.332441248	2.088626775	6.922596716	1.77106367	8.675418651	-0.242068655	7.673756466	3.508563011	164	0	0	0	0	0	1	1	1	1	1	Listing	15.15:	Small	Contrived	Dataset	for	Testing	Logistic	Regression.	Below	is	a	plot	of	the	dataset	using	different	colors	to	show	the
different	classes	for	each	point.	Figure	15.1:	Plot	of	the	Small	Contrived	Dataset	for	Testing	the	Backpropagation	algorithm.	Below	is	the	complete	example.	We	will	use	2	neurons	in	the	hidden	layer.	It	is	a	binary	classification	problem	(2	classes)	so	there	will	be	two	neurons	in	the	output	layer.	The	network	will	be	trained	for	20	epochs	with	a
learning	rate	of	0.5,	which	is	high	because	we	are	training	for	so	few	iterations.	#	Example	of	training	a	network	by	backpropagation	from	math	import	exp	from	random	import	seed	from	random	import	random	#	Initialize	a	network	def	initialize_network(n_inputs,	n_hidden,	n_outputs):	network	=	list()	hidden_layer	=	[{'weights':[random()	for	i	in
range(n_inputs	+	1)]}	for	i	in	range(n_hidden)]	network.append(hidden_layer)	output_layer	=	[{'weights':[random()	for	i	in	range(n_hidden	+	1)]}	for	i	in	range(n_outputs)]	15.2.	Tutorial	network.append(output_layer)	return	network	#	Calculate	neuron	activation	for	an	input	def	activate(weights,	inputs):	activation	=	weights[-1]	for	i	in
range(len(weights)-1):	activation	+=	weights[i]	*	inputs[i]	return	activation	#	Transfer	neuron	activation	def	transfer(activation):	return	1.0	/	(1.0	+	exp(-activation))	#	Forward	propagate	input	to	a	network	output	def	forward_propagate(network,	row):	inputs	=	row	for	layer	in	network:	new_inputs	=	[]	for	neuron	in	layer:	activation	=
activate(neuron['weights'],	inputs)	neuron['output']	=	transfer(activation)	new_inputs.append(neuron['output'])	inputs	=	new_inputs	return	inputs	#	Calculate	the	derivative	of	an	neuron	output	def	transfer_derivative(output):	return	output	*	(1.0	-	output)	#	Backpropagate	error	and	store	in	neurons	def	backward_propagate_error(network,	expected):
for	i	in	reversed(range(len(network))):	layer	=	network[i]	errors	=	list()	if	i	!=	len(network)-1:	for	j	in	range(len(layer)):	error	=	0.0	for	neuron	in	network[i	+	1]:	error	+=	(neuron['weights'][j]	*	neuron['delta'])	errors.append(error)	else:	for	j	in	range(len(layer)):	neuron	=	layer[j]	errors.append(expected[j]	-	neuron['output'])	for	j	in	range(len(layer)):
neuron	=	layer[j]	neuron['delta']	=	errors[j]	*	transfer_derivative(neuron['output'])	#	Update	network	weights	with	error	def	update_weights(network,	row,	l_rate):	for	i	in	range(len(network)):	inputs	=	row[:-1]	if	i	!=	0:	inputs	=	[neuron['output']	for	neuron	in	network[i	-	1]]	for	neuron	in	network[i]:	165	15.2.	Tutorial	166	for	j	in	range(len(inputs)):
neuron['weights'][j]	+=	l_rate	*	neuron['delta']	*	inputs[j]	neuron['weights'][-1]	+=	l_rate	*	neuron['delta']	#	Train	a	network	for	a	fixed	number	of	epochs	def	train_network(network,	train,	l_rate,	n_epoch,	n_outputs):	for	epoch	in	range(n_epoch):	sum_error	=	0	for	row	in	train:	outputs	=	forward_propagate(network,	row)	expected	=	[0	for	i	in
range(n_outputs)]	expected[row[-1]]	=	1	sum_error	+=	sum([(expected[i]-outputs[i])**2	for	i	in	range(len(expected))])	backward_propagate_error(network,	expected)	update_weights(network,	row,	l_rate)	print('>epoch=%d,	lrate=%.3f,	error=%.3f'	%	(epoch,	l_rate,	sum_error))	#	Test	training	backprop	algorithm	seed(1)	dataset	=
[[2.7810836,2.550537003,0],	[1.465489372,2.362125076,0],	[3.396561688,4.400293529,0],	[1.38807019,1.850220317,0],	[3.06407232,3.005305973,0],	[7.627531214,2.759262235,1],	[5.332441248,2.088626775,1],	[6.922596716,1.77106367,1],	[8.675418651,-0.242068655,1],	[7.673756466,3.508563011,1]]	n_inputs	=	len(dataset[0])	-	1	n_outputs	=
len(set([row[-1]	for	row	in	dataset]))	network	=	initialize_network(n_inputs,	2,	n_outputs)	train_network(network,	dataset,	0.5,	20,	n_outputs)	for	layer	in	network:	print(layer)	Listing	15.16:	Example	of	Training	a	Network	on	the	Contrived	Dataset.	Running	the	example	first	prints	the	sum	squared	error	each	training	epoch.	We	can	see	a	trend	of	this
error	decreasing	with	each	epoch.	Once	trained,	the	network	is	printed,	showing	the	learned	weights.	Also	still	in	the	network	are	output	and	delta	values	that	can	be	ignored.	We	could	update	our	training	function	to	delete	these	data	if	we	wanted.	>epoch=0,	lrate=0.500,	error=6.350	>epoch=1,	lrate=0.500,	error=5.531	>epoch=2,	lrate=0.500,
error=5.221	>epoch=3,	lrate=0.500,	error=4.951	>epoch=4,	lrate=0.500,	error=4.519	>epoch=5,	lrate=0.500,	error=4.173	>epoch=6,	lrate=0.500,	error=3.835	>epoch=7,	lrate=0.500,	error=3.506	>epoch=8,	lrate=0.500,	error=3.192	>epoch=9,	lrate=0.500,	error=2.898	>epoch=10,	lrate=0.500,	error=2.626	>epoch=11,	lrate=0.500,
error=2.377	>epoch=12,	lrate=0.500,	error=2.153	15.2.	Tutorial	167	>epoch=13,	lrate=0.500,	error=1.953	>epoch=14,	lrate=0.500,	error=1.774	>epoch=15,	lrate=0.500,	error=1.614	>epoch=16,	lrate=0.500,	error=1.472	>epoch=17,	lrate=0.500,	error=1.346	>epoch=18,	lrate=0.500,	error=1.233	>epoch=19,	lrate=0.500,	error=1.132
[{'weights':	[-1.4688375095432327,	1.850887325439514,	1.0858178629550297],	'output':	0.029980305604426185,	'delta':	-0.0059546604162323625},	{'weights':	[0.37711098142462157,	-0.0625909894552989,	0.2765123702642716],	'output':	0.9456229000211323,	'delta':	0.0026279652850863837}]	[{'weights':	[2.515394649397849,
-0.3391927502445985,	-0.9671565426390275],	'output':	0.23648794202357587,	'delta':	-0.04270059278364587},	{'weights':	[-2.5584149848484263,	1.0036422106209202,	0.42383086467582715],	'output':	0.7790535202438367,	'delta':	0.03803132596437354}]	Listing	15.17:	Example	Output	from	Training	a	Network	on	the	Contrived	Dataset.	Once
a	network	is	trained,	we	need	to	use	it	to	make	predictions.	15.2.5	Predict	Making	predictions	with	a	trained	neural	network	is	easy	enough.	We	have	already	seen	how	to	forward-propagate	an	input	pattern	to	get	an	output.	This	is	all	we	need	to	do	to	make	a	prediction.	We	can	use	the	output	values	themselves	directly	as	the	probability	of	a	pattern
belonging	to	each	output	class.	It	may	be	more	useful	to	turn	this	output	back	into	a	crisp	class	prediction.	We	can	do	this	by	selecting	the	class	value	with	the	larger	probability.	This	is	also	called	the	arg	max	function.	Below	is	a	function	named	predict()	that	implements	this	procedure.	It	returns	the	index	in	the	network	output	that	has	the	largest
probability.	It	assumes	that	class	values	have	been	converted	to	integers	starting	at	0.	#	Make	a	prediction	with	a	network	def	predict(network,	row):	outputs	=	forward_propagate(network,	row)	return	outputs.index(max(outputs))	Listing	15.18:	Function	To	Make	a	Prediction	With	a	Network.	We	can	put	this	together	with	our	code	above	for	forward-
propagating	input	and	with	our	small	contrived	dataset	to	test	making	predictions	with	an	already-trained	network.	The	example	hardcodes	a	network	trained	from	the	previous	step.	The	complete	example	is	listed	below.	#	Example	of	making	predictions	from	math	import	exp	#	Calculate	neuron	activation	for	an	input	def	activate(weights,	inputs):
activation	=	weights[-1]	for	i	in	range(len(weights)-1):	activation	+=	weights[i]	*	inputs[i]	return	activation	15.2.	Tutorial	168	#	Transfer	neuron	activation	def	transfer(activation):	return	1.0	/	(1.0	+	exp(-activation))	#	Forward	propagate	input	to	a	network	output	def	forward_propagate(network,	row):	inputs	=	row	for	layer	in	network:	new_inputs	=
[]	for	neuron	in	layer:	activation	=	activate(neuron['weights'],	inputs)	neuron['output']	=	transfer(activation)	new_inputs.append(neuron['output'])	inputs	=	new_inputs	return	inputs	#	Make	a	prediction	with	a	network	def	predict(network,	row):	outputs	=	forward_propagate(network,	row)	return	outputs.index(max(outputs))	#	Test	making	predictions
with	the	network	dataset	=	[[2.7810836,2.550537003,0],	[1.465489372,2.362125076,0],	[3.396561688,4.400293529,0],	[1.38807019,1.850220317,0],	[3.06407232,3.005305973,0],	[7.627531214,2.759262235,1],	[5.332441248,2.088626775,1],	[6.922596716,1.77106367,1],	[8.675418651,-0.242068655,1],	[7.673756466,3.508563011,1]]	network	=
[[{'weights':	[-1.482313569067226,	1.8308790073202204,	1.078381922048799]},	{'weights':	[0.23244990332399884,	0.3621998343835864,	0.40289821191094327]}],	[{'weights':	[2.5001872433501404,	0.7887233511355132,	-1.1026649757805829]},	{'weights':	[-2.429350576245497,	0.8357651039198697,	1.0699217181280656]}]]	for	row	in
dataset:	prediction	=	predict(network,	row)	print('Expected=%d,	Got=%d'	%	(row[-1],	prediction))	Listing	15.19:	Example	of	Making	a	Prediction	on	the	Contrived	Dataset.	Running	the	example	prints	the	expected	output	for	each	record	in	the	training	dataset,	followed	by	the	crisp	prediction	made	by	the	network.	It	shows	that	the	network	achieves
100%	accuracy	on	this	small	dataset.	Expected=0,	Expected=0,	Expected=0,	Expected=0,	Expected=0,	Expected=1,	Expected=1,	Expected=1,	Expected=1,	Expected=1,	Got=0	Got=0	Got=0	Got=0	Got=0	Got=1	Got=1	Got=1	Got=1	Got=1	15.2.	Tutorial	169	Listing	15.20:	Example	Output	from	Making	Predictions	on	the	Contrived	Dataset.	Now	we
are	ready	to	apply	our	backpropagation	algorithm	to	a	real	world	dataset.	15.2.6	Wheat	Seeds	Case	Study	This	section	applies	the	Backpropagation	algorithm	to	the	wheat	seeds	dataset.	The	first	step	is	to	load	the	dataset	and	convert	the	loaded	data	to	numbers	that	we	can	use	in	our	neural	network.	For	this	we	will	use	the	helper	function	load	csv()
to	load	the	file,	str	column	to	float()	to	convert	string	numbers	to	floats	and	str	column	to	int()	to	convert	the	class	column	to	integer	values.	Input	values	vary	in	scale	and	need	to	be	normalized	to	the	range	of	0	and	1.	It	is	generally	good	practice	to	normalize	input	values	to	the	range	of	the	chosen	transfer	function,	in	this	case,	the	sigmoid	function
that	outputs	values	between	0	and	1.	The	dataset	minmax()	and	normalize	dataset()	helper	functions	were	used	to	normalize	the	input	values.	We	will	evaluate	the	algorithm	using	k-fold	cross-validation	with	5	folds.	This	means	that	201	=	40.2	or	40	records	will	be	in	each	fold.	We	will	use	the	helper	functions	evaluate	algorithm()	5	to	evaluate	the
algorithm	with	cross-validation	and	accuracy	metric()	to	calculate	the	accuracy	of	predictions.	A	new	function	named	back	propagation()	was	developed	to	manage	the	application	of	the	Backpropagation	algorithm,	first	initializing	a	network,	training	it	on	the	training	dataset	and	then	using	the	trained	network	to	make	predictions	on	a	test	dataset.
The	complete	example	is	listed	below.	#	Backprop	on	the	Seeds	Dataset	from	random	import	seed	from	random	import	randrange	from	random	import	random	from	csv	import	reader	from	math	import	exp	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for	row	in	csv_reader:	if	not
row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Convert	string	column	to	integer	def	str_column_to_int(dataset,	column):	class_values	=	[row[column]	for	row	in	dataset]	unique	=	set(class_values)	15.2.	Tutorial
lookup	=	dict()	for	i,	value	in	enumerate(unique):	lookup[value]	=	i	for	row	in	dataset:	row[column]	=	lookup[row[column]]	return	lookup	#	Find	the	min	and	max	values	for	each	column	def	dataset_minmax(dataset):	return	[[min(column),	max(column)]	for	column	in	zip(*dataset)]	#	Rescale	dataset	columns	to	the	range	0-1	def
normalize_dataset(dataset,	minmax):	for	row	in	dataset:	for	i	in	range(len(row)-1):	row[i]	=	(row[i]	-	minmax[i][0])	/	(minmax[i][1]	-	minmax[i][0])	#	Split	a	dataset	into	k	folds	def	cross_validation_split(dataset,	n_folds):	dataset_split	=	list()	dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/	n_folds)	for	_	in	range(n_folds):	fold	=	list()	while
len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))	fold.append(dataset_copy.pop(index))	dataset_split.append(fold)	return	dataset_split	#	Calculate	accuracy	percentage	def	accuracy_metric(actual,	predicted):	correct	=	0	for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/	float(len(actual))	*	100.0	#	Evaluate
an	algorithm	using	a	cross	validation	split	def	evaluate_algorithm(dataset,	algorithm,	n_folds,	*args):	folds	=	cross_validation_split(dataset,	n_folds)	scores	=	list()	for	fold	in	folds:	train_set	=	list(folds)	train_set.remove(fold)	train_set	=	sum(train_set,	[])	test_set	=	list()	for	row	in	fold:	row_copy	=	list(row)	test_set.append(row_copy)	row_copy[-1]	=
None	predicted	=	algorithm(train_set,	test_set,	*args)	actual	=	[row[-1]	for	row	in	fold]	accuracy	=	accuracy_metric(actual,	predicted)	scores.append(accuracy)	return	scores	170	15.2.	Tutorial	#	Calculate	neuron	activation	for	an	input	def	activate(weights,	inputs):	activation	=	weights[-1]	for	i	in	range(len(weights)-1):	activation	+=	weights[i]	*
inputs[i]	return	activation	#	Transfer	neuron	activation	def	transfer(activation):	return	1.0	/	(1.0	+	exp(-activation))	#	Forward	propagate	input	to	a	network	output	def	forward_propagate(network,	row):	inputs	=	row	for	layer	in	network:	new_inputs	=	[]	for	neuron	in	layer:	activation	=	activate(neuron['weights'],	inputs)	neuron['output']	=
transfer(activation)	new_inputs.append(neuron['output'])	inputs	=	new_inputs	return	inputs	#	Calculate	the	derivative	of	an	neuron	output	def	transfer_derivative(output):	return	output	*	(1.0	-	output)	#	Backpropagate	error	and	store	in	neurons	def	backward_propagate_error(network,	expected):	for	i	in	reversed(range(len(network))):	layer	=
network[i]	errors	=	list()	if	i	!=	len(network)-1:	for	j	in	range(len(layer)):	error	=	0.0	for	neuron	in	network[i	+	1]:	error	+=	(neuron['weights'][j]	*	neuron['delta'])	errors.append(error)	else:	for	j	in	range(len(layer)):	neuron	=	layer[j]	errors.append(expected[j]	-	neuron['output'])	for	j	in	range(len(layer)):	neuron	=	layer[j]	neuron['delta']	=	errors[j]	*
transfer_derivative(neuron['output'])	#	Update	network	weights	with	error	def	update_weights(network,	row,	l_rate):	for	i	in	range(len(network)):	inputs	=	row[:-1]	if	i	!=	0:	inputs	=	[neuron['output']	for	neuron	in	network[i	-	1]]	for	neuron	in	network[i]:	for	j	in	range(len(inputs)):	neuron['weights'][j]	+=	l_rate	*	neuron['delta']	*	inputs[j]	171	15.2.
Tutorial	neuron['weights'][-1]	+=	l_rate	*	neuron['delta']	#	Train	a	network	for	a	fixed	number	of	epochs	def	train_network(network,	train,	l_rate,	n_epoch,	n_outputs):	for	_	in	range(n_epoch):	for	row	in	train:	forward_propagate(network,	row)	expected	=	[0	for	i	in	range(n_outputs)]	expected[row[-1]]	=	1	backward_propagate_error(network,
expected)	update_weights(network,	row,	l_rate)	#	Initialize	a	network	def	initialize_network(n_inputs,	n_hidden,	n_outputs):	network	=	list()	hidden_layer	=	[{'weights':[random()	for	i	in	range(n_inputs	+	1)]}	for	i	in	range(n_hidden)]	network.append(hidden_layer)	output_layer	=	[{'weights':[random()	for	i	in	range(n_hidden	+	1)]}	for	i	in
range(n_outputs)]	network.append(output_layer)	return	network	#	Make	a	prediction	with	a	network	def	predict(network,	row):	outputs	=	forward_propagate(network,	row)	return	outputs.index(max(outputs))	#	Backpropagation	Algorithm	With	Stochastic	Gradient	Descent	def	back_propagation(train,	test,	l_rate,	n_epoch,	n_hidden):	n_inputs	=
len(train[0])	-	1	n_outputs	=	len(set([row[-1]	for	row	in	train]))	network	=	initialize_network(n_inputs,	n_hidden,	n_outputs)	train_network(network,	train,	l_rate,	n_epoch,	n_outputs)	predictions	=	list()	for	row	in	test:	prediction	=	predict(network,	row)	predictions.append(prediction)	return(predictions)	#	Test	Backprop	on	Seeds	dataset	seed(1)	#	load
and	prepare	data	filename	=	'seeds_dataset.csv'	dataset	=	load_csv(filename)	for	i	in	range(len(dataset[0])-1):	str_column_to_float(dataset,	i)	#	convert	class	column	to	integers	str_column_to_int(dataset,	len(dataset[0])-1)	#	normalize	input	variables	minmax	=	dataset_minmax(dataset)	normalize_dataset(dataset,	minmax)	#	evaluate	algorithm	n_folds
=	5	l_rate	=	0.3	n_epoch	=	500	172	15.3.	Extensions	173	n_hidden	=	5	scores	=	evaluate_algorithm(dataset,	back_propagation,	n_folds,	l_rate,	n_epoch,	n_hidden)	print('Scores:	%s'	%	scores)	print('Mean	Accuracy:	%.3f%%'	%	(sum(scores)/float(len(scores))))	Listing	15.21:	Backpropagation	Algorithm	on	the	Wheat	Seeds	Dataset.	A	network	with	5
neurons	in	the	hidden	layer	and	3	neurons	in	the	output	layer	was	constructed.	The	network	was	trained	for	500	epochs	with	a	learning	rate	of	0.3.	These	parameters	were	found	with	a	little	trial	and	error,	but	you	may	be	able	to	do	much	better.	Running	the	example	prints	the	average	classification	accuracy	on	each	fold	as	well	as	the	average
performance	across	all	folds.	You	can	see	that	backpropagation	and	the	chosen	configuration	achieved	a	mean	classification	accuracy	of	about	93%	which	is	dramatically	better	than	the	baseline	of	28%	accuracy.	Scores:	[92.85714285714286,	92.85714285714286,	97.61904761904762,	92.85714285714286,	90.47619047619048]	Mean	Accuracy:
93.333%	Listing	15.22:	Example	Output	from	the	Backpropagation	Algorithm	on	the	Wheat	Seeds	Dataset.	15.3	Extensions	This	section	lists	extensions	to	the	tutorial	that	you	may	wish	to	explore.	ˆ	Tune	Algorithm	Parameters.	Try	larger	or	smaller	networks	trained	for	longer	or	shorter.	See	if	you	can	get	better	performance	on	the	seeds	dataset.	ˆ
Additional	Methods.	Experiment	with	different	weight	initialization	techniques	(such	as	small	random	numbers)	and	different	transfer	functions	(such	as	tanh).	ˆ	More	Layers.	Add	support	for	more	hidden	layers,	trained	in	just	the	same	way	as	the	one	hidden	layer	used	in	this	tutorial.	ˆ	Regression.	Change	the	network	so	that	there	is	only	one	neuron
in	the	output	layer	and	that	a	real	value	is	predicted.	Pick	a	regression	dataset	to	practice	on.	A	linear	transfer	function	could	be	used	for	neurons	in	the	output	layer,	or	the	output	values	of	the	chosen	dataset	could	be	scaled	to	values	between	0	and	1.	ˆ	Batch	Gradient	Descent.	Change	the	training	procedure	from	online	to	batch	gradient	descent
and	update	the	weights	only	at	the	end	of	each	epoch.	15.4	Review	In	this	tutorial,	you	discovered	how	to	implement	the	Backpropagation	algorithm	from	scratch.	Specifically,	you	learned:	ˆ	How	to	forward-propagate	an	input	to	calculate	a	network	output.	15.4.	Review	174	ˆ	How	to	backpropagate	error	and	update	network	weights.	ˆ	How	to	apply
the	backpropagation	algorithm	to	a	real	world	dataset.	15.4.1	Further	Reading	ˆ	Section	18.7.	Artificial	Neural	Networks,	page	717,	Artificial	Intelligence:	A	Modern	Approach,	2010.	ˆ	Section	7.1	Neural	Networks,	page	141	and	Section	13.2	Neural	Networks,	page	333,	Applied	Predictive	Modeling,	2013	ˆ	Chapter	5.	Back-Propagation,	page	39,
Neural	Smithing:	Supervised	Learning	in	Feedforward	Artificial	Neural	Networks,	1999	15.4.2	Next	This	ends	Part	3	on	nonlinear	algorithms.	Next,	in	Part	4	you	will	discover	ensemble	algorithms.	In	the	next	tutorial,	you	will	discover	how	to	implement	and	apply	the	Bootstrap	Aggregation	algorithm	for	classification.	Part	IV	Ensemble	Algorithms	175
Chapter	16	Bootstrap	Aggregation	Decision	trees	are	a	simple	and	powerful	predictive	modeling	technique,	but	they	suffer	from	high-variance.	This	means	that	trees	can	get	very	different	results	given	different	training	data.	A	technique	to	make	decision	trees	more	robust	and	to	achieve	better	performance	is	called	bootstrap	aggregation	or	bagging
for	short.	In	this	tutorial,	you	will	discover	how	to	implement	the	bagging	procedure	with	decision	trees	from	scratch	with	Python.	After	completing	this	tutorial,	you	will	know:	ˆ	How	to	create	a	bootstrap	sample	of	your	dataset.	ˆ	How	to	make	predictions	with	bootstrapped	models.	ˆ	How	to	apply	bagging	to	your	own	predictive	modeling	problems.
Let’s	get	started.	16.1	Descriptions	This	section	provides	a	brief	description	to	Bootstrap	Aggregation	and	the	Sonar	dataset	that	will	be	used	in	this	tutorial.	16.1.1	Bootstrap	Aggregation	Algorithm	A	bootstrap	is	a	sample	of	a	dataset	with	replacement.	This	means	that	a	new	dataset	is	created	from	a	random	sample	of	an	existing	dataset	where	a
given	row	may	be	selected	and	added	more	than	once	to	the	sample.	It	is	a	useful	approach	to	use	when	estimating	values	such	as	the	mean	for	a	broader	dataset,	when	you	only	have	a	limited	dataset	available.	By	creating	samples	of	your	dataset	and	estimating	the	mean	from	those	samples,	you	can	take	the	average	of	those	estimates	and	get	a
better	idea	of	the	true	mean	of	the	underlying	problem.	This	same	approach	can	be	used	with	machine	learning	algorithms	that	have	a	high	variance,	such	as	decision	trees	(CART)	introduced	in	Chapter	11.	A	separate	model	is	trained	on	each	bootstrap	sample	of	data	and	the	average	output	of	those	models	used	to	make	predictions.	This	technique	is
called	bootstrap	aggregation	or	bagging	for	short.	Variance	means	that	an	algorithm’s	performance	is	sensitive	to	the	training	data,	with	high	variance	suggesting	that	the	more	the	training	data	is	changed,	the	more	the	performance	of	the	algorithm	will	vary.	176	16.2.	Tutorial	177	The	performance	of	high	variance	machine	learning	algorithms	like
unpruned	decision	trees	can	be	improved	by	training	many	trees	and	taking	the	average	of	their	predictions.	Results	are	often	better	than	a	single	decision	tree.	Another	benefit	of	bagging	in	addition	to	improved	performance	is	that	the	bagged	decision	trees	cannot	overfit	the	problem.	Trees	can	continue	to	be	added	until	a	maximum	in	performance
is	achieved.	16.1.2	Sonar	Dataset	In	this	tutorial	we	will	use	the	Sonar	Dataset.	This	dataset	involves	the	discrimination	between	mines	and	rocks.	The	baseline	performance	on	the	problem	is	approximately	53%.	You	can	learn	more	about	it	in	Appendix	A,	Section	A.5.	Download	the	dataset	and	save	it	into	your	current	working	directory	with	the
filename	sonar.all-data.csv.	16.2	Tutorial	This	tutorial	is	broken	down	into	2	parts:	ˆ	Bootstrap	Resample.	ˆ	Sonar	Case	Study.	These	steps	provide	the	foundation	that	you	need	to	implement	and	apply	bootstrap	aggregation	with	decision	trees	to	your	own	predictive	modeling	problems.	16.2.1	Bootstrap	Resample	Let’s	start	off	by	getting	a	strong	idea
of	how	the	bootstrap	method	works.	We	can	create	a	new	sample	of	a	dataset	by	randomly	selecting	rows	from	the	dataset	and	adding	them	to	a	new	list.	We	can	repeat	this	for	a	fixed	number	of	rows	or	until	the	size	of	the	new	dataset	matches	a	ratio	of	the	size	of	the	original	dataset.	We	can	allow	sampling	with	replacement	by	not	removing	the	row
that	was	selected	so	that	it	is	available	for	future	selections.	Below	is	a	function	named	subsample()	that	implements	this	procedure.	The	randrange()	function	from	the	random	module	is	used	to	select	a	random	row	index	to	add	to	the	sample	each	iteration	of	the	loop.	The	default	size	of	the	sample	is	the	size	of	the	original	dataset.	#	Create	a	random
subsample	from	the	dataset	with	replacement	def	subsample(dataset,	ratio=1.0):	sample	=	list()	n_sample	=	round(len(dataset)	*	ratio)	while	len(sample)	<	n_sample:	index	=	randrange(len(dataset))	sample.append(dataset[index])	return	sample	Listing	16.1:	Function	To	Make	a	Subsample	of	a	Dataset.	We	can	use	this	function	to	estimate	the	mean
of	a	contrived	dataset.	First,	we	can	create	a	dataset	with	20	rows	and	a	single	column	of	random	numbers	between	0	and	9	and	calculate	the	16.2.	Tutorial	178	mean	value.	We	can	then	make	bootstrap	samples	of	the	original	dataset,	calculate	the	mean,	and	repeat	this	process	until	we	have	a	list	of	means.	Taking	the	average	of	these	sample	means
should	give	us	a	robust	estimate	of	the	mean	of	the	entire	dataset.	The	complete	example	is	listed	below.	Each	bootstrap	sample	is	created	as	a	10%	sample	of	the	original	20	observation	dataset	(or	2	observations).	We	then	experiment	by	creating	1,	10,	100	bootstrap	samples	of	the	original	dataset,	calculate	their	mean	value,	then	average	all	of
those	estimated	mean	values.	#	Example	of	subsampling	a	dataste	from	random	import	seed	from	random	import	randrange	#	Create	a	random	subsample	from	the	dataset	with	replacement	def	subsample(dataset,	ratio=1.0):	sample	=	list()	n_sample	=	round(len(dataset)	*	ratio)	while	len(sample)	<	n_sample:	index	=	randrange(len(dataset))
sample.append(dataset[index])	return	sample	#	Calculate	the	mean	of	a	list	of	numbers	def	mean(numbers):	return	sum(numbers)	/	float(len(numbers))	#	Test	subsampling	a	dataset	seed(1)	#	True	mean	dataset	=	[[randrange(10)]	for	i	in	range(20)]	print('True	Mean:	%.3f'	%	mean([row[0]	for	row	in	dataset]))	#	Estimated	means	ratio	=	0.10	for	size
in	[1,	10,	100]:	sample_means	=	list()	for	i	in	range(size):	sample	=	subsample(dataset,	ratio)	sample_mean	=	mean([row[0]	for	row	in	sample])	sample_means.append(sample_mean)	print('Samples=%d,	Estimated	Mean:	%.3f'	%	(size,	mean(sample_means)))	Listing	16.2:	Example	of	Subsampling	a	Dataset.	Running	the	example	prints	the	original
mean	value	we	aim	to	estimate.	We	can	then	see	the	estimated	mean	from	the	various	different	numbers	of	bootstrap	samples.	We	can	see	that	with	100	samples	we	achieve	a	good	estimate	of	the	mean.	True	Mean:	4.500	Samples=1,	Estimated	Mean:	4.000	Samples=10,	Estimated	Mean:	4.700	Samples=100,	Estimated	Mean:	4.570	Listing	16.3:
Example	Output	from	Subsampling	a	Dataset.	Instead	of	calculating	the	mean	value,	we	can	create	a	model	from	each	subsample.	Next,	let’s	see	how	we	can	combine	the	predictions	from	multiple	bootstrap	models.	16.2.	Tutorial	16.2.2	179	Sonar	Case	Study	In	this	section,	we	will	apply	the	Bagging	algorithm	to	the	Sonar	dataset.	The	example
assumes	that	a	CSV	copy	of	the	dataset	is	in	the	current	working	directory	with	the	file	name	sonar.all-data.csv.	The	dataset	is	first	loaded,	the	string	values	converted	to	numeric	and	the	output	column	is	converted	from	strings	to	the	integer	values	of	0	to	1.	This	is	achieved	with	helper	functions	load	csv(),	str	column	to	float()	and	str	column	to	int()
to	load	and	prepare	the	dataset.	We	will	use	k-fold	cross-validation	to	estimate	the	performance	of	the	learned	model	on	unseen	data.	This	means	that	we	will	construct	and	evaluate	k	models	and	estimate	the	performance	as	the	mean	model	error.	Classification	accuracy	will	be	used	to	evaluate	each	model.	These	behaviors	are	provided	in	the	cross
validation	split(),	accuracy	metric()	and	evaluate	algorithm()	helper	functions.	We	will	also	use	an	implementation	of	the	Classification	and	Regression	Trees	(CART)	algorithm	adapted	for	bagging	with	the	helper	functions	from	Chapter	11	including	test	split()	to	split	a	dataset	into	groups,	gini	index()	to	evaluate	a	split	point,	get	split()	to	find	an
optimal	split	point,	to	terminal(),	split()	and	build	tree()	used	to	create	a	single	decision	tree,	predict()	to	make	a	prediction	with	a	decision	tree	and	the	subsample()	function	described	in	the	previous	step	to	make	a	subsample	of	the	training	dataset.	A	new	function	named	bagging	predict()	is	developed	that	is	responsible	for	making	a	prediction	with
each	decision	tree	and	combining	the	predictions	into	a	single	return	value.	This	is	achieved	by	selecting	the	most	common	prediction	from	the	list	of	predictions	made	by	the	bagged	trees.	Finally,	a	new	function	named	bagging()	is	developed	that	is	responsible	for	creating	the	samples	of	the	training	dataset,	training	a	decision	tree	on	each,	then
making	predictions	on	the	test	dataset	using	the	list	of	bagged	trees.	The	complete	example	is	listed	below.	#	Bagging	Algorithm	on	the	Sonar	dataset	from	random	import	seed	from	random	import	randrange	from	csv	import	reader	#	Load	a	CSV	file	def	load_csv(filename):	dataset	=	list()	with	open(filename,	'r')	as	file:	csv_reader	=	reader(file)	for
row	in	csv_reader:	if	not	row:	continue	dataset.append(row)	return	dataset	#	Convert	string	column	to	float	def	str_column_to_float(dataset,	column):	for	row	in	dataset:	row[column]	=	float(row[column].strip())	#	Convert	string	column	to	integer	def	str_column_to_int(dataset,	column):	16.2.	Tutorial	class_values	=	[row[column]	for	row	in	dataset]
unique	=	set(class_values)	lookup	=	dict()	for	i,	value	in	enumerate(unique):	lookup[value]	=	i	for	row	in	dataset:	row[column]	=	lookup[row[column]]	return	lookup	#	Split	a	dataset	into	k	folds	def	cross_validation_split(dataset,	n_folds):	dataset_split	=	list()	dataset_copy	=	list(dataset)	fold_size	=	int(len(dataset)	/	n_folds)	for	_	in	range(n_folds):	fold
=	list()	while	len(fold)	<	fold_size:	index	=	randrange(len(dataset_copy))	fold.append(dataset_copy.pop(index))	dataset_split.append(fold)	return	dataset_split	#	Calculate	accuracy	percentage	def	accuracy_metric(actual,	predicted):	correct	=	0	for	i	in	range(len(actual)):	if	actual[i]	==	predicted[i]:	correct	+=	1	return	correct	/	float(len(actual))	*	100.0
#	Evaluate	an	algorithm	using	a	cross	validation	split	def	evaluate_algorithm(dataset,	algorithm,	n_folds,	*args):	folds	=	cross_validation_split(dataset,	n_folds)	scores	=	list()	for	fold	in	folds:	train_set	=	list(folds)	train_set.remove(fold)	train_set	=	sum(train_set,	[])	test_set	=	list()	for	row	in	fold:	row_copy	=	list(row)	test_set.append(row_copy)
row_copy[-1]	=	None	predicted	=	algorithm(train_set,	test_set,	*args)	actual	=	[row[-1]	for	row	in	fold]	accuracy	=	accuracy_metric(actual,	predicted)	scores.append(accuracy)	return	scores	#	Split	a	dataset	based	on	an	attribute	and	an	attribute	value	def	test_split(index,	value,	dataset):	left,	right	=	list(),	list()	for	row	in	dataset:	if	row[index]	<	value:
left.append(row)	else:	180	16.2.	Tutorial	right.append(row)	return	left,	right	#	Calculate	the	Gini	index	for	a	split	dataset	def	gini_index(groups,	classes):	#	count	all	samples	at	split	point	n_instances	=	float(sum([len(group)	for	group	in	groups]))	#	sum	weighted	Gini	index	for	each	group	gini	=	0.0	for	group	in	groups:	size	=	float(len(group))	#	avoid
divide	by	zero	if	size	==	0:	continue	score	=	0.0	#	score	the	group	based	on	the	score	for	each	class	for	class_val	in	classes:	p	=	[row[-1]	for	row	in	group].count(class_val)	/	size	score	+=	p	*	p	#	weight	the	group	score	by	its	relative	size	gini	+=	(1.0	-	score)	*	(size	/	n_instances)	return	gini	#	Select	the	best	split	point	for	a	dataset	def
get_split(dataset):	class_values	=	list(set(row[-1]	for	row	in	dataset))	b_index,	b_value,	b_score,	b_groups	=	999,	999,	999,	None	for	index	in	range(len(dataset[0])-1):	for	row	in	dataset:	#	for	i	in	range(len(dataset)):	#	row	=	dataset[randrange(len(dataset))]	groups	=	test_split(index,	row[index],	dataset)	gini	=	gini_index(groups,	class_values)	if	gini	<
b_score:	b_index,	b_value,	b_score,	b_groups	=	index,	row[index],	gini,	groups	return	{'index':b_index,	'value':b_value,	'groups':b_groups}	#	Create	a	terminal	node	value	def	to_terminal(group):	outcomes	=	[row[-1]	for	row	in	group]	return	max(set(outcomes),	key=outcomes.count)	#	Create	child	splits	for	a	node	or	make	terminal	def	split(node,
max_depth,	min_size,	depth):	left,	right	=	node['groups']	del(node['groups'])	#	check	for	a	no	split	if	not	left	or	not	right:	node['left']	=	node['right']	=	to_terminal(left	+	right)	return	#	check	for	max	depth	if	depth	>=	max_depth:	node['left'],	node['right']	=	to_terminal(left),	to_terminal(right)	return	#	process	left	child	if	len(left)	200:	print('That	is	too
fast')	else:	print('That	is	safe')	Listing	B.11:	Example	of	working	with	an	If-Then-Else	conditional.	Notice	the	colon	(:)	at	the	end	of	the	condition	and	the	meaningful	tab	intend	for	the	code	block	under	the	condition.	Running	the	example	prints:	That	is	fast	Listing	B.12:	Output	of	example	working	with	an	If-Then-Else	conditional.	B.2.2	For-Loop	#	For-
Loop	for	i	in	range(10):	print	i	Listing	B.13:	Example	of	working	with	a	For-Loop.	Running	the	example	prints:	0	1	2	3	4	5	6	7	8	9	Listing	B.14:	Output	of	example	working	with	a	For-Loop.	B.3.	Data	Structures	B.2.3	222	While-Loop	#	While-Loop	i	=	0	while	i	<	10:	print	i	i	+=	1	Listing	B.15:	Example	of	working	with	a	While-Loop.	Running	the	example
prints:	0	1	2	3	4	5	6	7	8	9	Listing	B.16:	Output	of	example	working	with	a	While-Loop.	B.3	Data	Structures	There	are	three	data	structures	in	Python	that	you	will	find	the	most	used	and	useful.	They	are	tuples,	lists	and	dictionaries.	B.3.1	Tuple	Tuples	are	read-only	collections	of	items.	a	=	(1,	2,	3)	print	a	Listing	B.17:	Example	of	working	with	a	Tuple.
Running	the	example	prints:	(1,	2,	3)	Listing	B.18:	Output	of	example	working	with	a	Tuple.	B.3.2	List	Lists	use	the	square	bracket	notation	and	can	be	index	using	array	notation.	mylist	=	[1,	2,	3]	print("Zeroth	Value:	%d"	%	mylist[0])	mylist.append(4)	print("List	Length:	%d"	%	len(mylist))	for	value	in	mylist:	B.3.	Data	Structures	223	print	value
Listing	B.19:	Example	of	working	with	a	List.	Notice	that	we	are	using	some	simple	printf-like	functionality	to	combine	strings	and	variables	when	printing.	Running	the	example	prints:	Zeroth	Value:	1	List	Length:	4	1	2	3	4	Listing	B.20:	Output	of	example	working	with	a	List.	B.3.3	Dictionary	Dictionaries	are	mappings	of	names	to	values,	like	key-
value	pairs.	Note	the	use	of	the	curly	bracket	and	colon	notations	when	defining	the	dictionary.	mydict	=	{'a':	1,	'b':	2,	'c':	3}	print("A	value:	%d"	%	mydict['a'])	mydict['a']	=	11	print("A	value:	%d"	%	mydict['a'])	print("Keys:	%s"	%	mydict.keys())	print("Values:	%s"	%	mydict.values())	for	key	in	mydict.keys():	print	mydict[key]	Listing	B.21:	Example	of
working	with	a	Dictionary.	Running	the	example	prints:	A	value:	1	A	value:	11	Keys:	['a',	'c',	'b']	Values:	[11,	3,	2]	11	3	2	Listing	B.22:	Output	of	example	working	with	a	Dictionary.	B.3.4	Functions	The	biggest	gotcha	with	Python	is	the	whitespace.	Ensure	that	you	have	an	empty	new	line	after	indented	code.	The	example	below	defines	a	new	function
to	calculate	the	sum	of	two	values	and	calls	the	function	with	two	arguments.	#	Sum	function	def	mysum(x,	y):	return	x	+	y	#	Test	sum	function	B.3.	Data	Structures	result	=	mysum(1,	3)	print(result)	Listing	B.23:	Example	of	working	with	a	custom	function.	Running	the	example	prints:	4	Listing	B.24:	Output	of	example	working	with	a	custom
function.	224
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